
PolytopeWalk: Sparse MCMC Sampling over
Polytopes
Benny Sun1 and Yuansi Chen2

1 Department of Statistics, Duke University 2 Department of Mathematics, ETH Zurich
DOI: 10.21105/joss.07957

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @martinmodrak
• @matt-graham

Submitted: 04 March 2025
Published: 28 July 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
High dimensional sampling is an important computational tool in statistics, with applications
in stochastic simulation, volume computation, and fast randomized algorithms. We present
PolytopeWalk, a scalable library designed for sampling from a uniform distribution over
polytopes, which are bounded geometric objects formed by linear inequalities. For sampling,
we use Markov chain Monte Carlo (MCMC) methods, defined as a family of algorithms for
generating approximate samples from a target probability distribution. Six state-of-the-art
MCMC algorithms are implemented, including the Dikin, Vaidya, and John Walk. Additionally,
we introduce novel sparse constrained formulations of these algorithms, enabling efficient
sampling from sparse polytopes of the form 𝒦2 = {𝑥 ∈ ℝ𝑑 | 𝐴𝑥 = 𝑏, 𝑥 ⪰𝑘 0}. This
implementation maintains sparsity in 𝐴, ensuring scalability to higher dimensional settings
in per-iteration cost. Finally, PolytopeWalk includes implementations of 2 preprocessing
algorithms, facial reduction and initialization, thus providing an end-to-end solution.

Statement of Need
High dimensional sampling is a fundamental problem in many computational disciplines such
as statistics, probability, and operation research. For example, sampling is applied in portfolio
optimization (Calès et al., 2023), metabolic networks in biology (Heirendt et al., 2018)
and volume approximation over convex shapes (Simonovits, 2003). Markov chain Monte
Carlo (MCMC) sampling algorithms offer a natural and scalable solution to this problem.
These algorithms construct a Markov chain whose stationary distribution matches the target
distribution. By running the chain for a large number of steps to ensure mixing, MCMC
algorithms can efficiently generate approximately independent samples close to the target
distribution, while not suffering from the curse of dimension issues.

This package focuses on sampling from a uniform distribution over a user-specified polytope.
We define the polytope as the following. Let 𝐴 ∈ ℝ𝑛×𝑑, 𝑏 ∈ ℝ𝑛 and let 𝑥 ⪰𝑘 𝑦 mean that
the last 𝑘-coordinates of 𝑥 are greater than or equal to the corresponding coordinates of 𝑦, i.e.,
{𝑥𝑑−𝑘+1−𝑦𝑑−𝑘+1 ≥ 0, ..., 𝑥𝑑−𝑦𝑑 ≥ 0}. Depending on whether we allow equality constraints,
the sampling problem can be formalized in two forms:

1. The full-dimensional form:

𝒦1 = {𝑥 ∈ ℝ𝑑 |𝐴𝑥 ≤ 𝑏}, (1)

where 𝒦1 is specified via 𝑛 inequality constraints.

2. The constrained form:

𝒦2 = {𝑥 ∈ ℝ𝑑 | 𝐴𝑥 = 𝑏, 𝑥 ⪰𝑘 0}, (2)

where 𝒦2 is specified via 𝑛 equality constraints and 𝑘 coordinate inequality constraints.

Sun, & Chen. (2025). PolytopeWalk: Sparse MCMC Sampling over Polytopes. Journal of Open Source Software, 10(111), 7957. https:
//doi.org/10.21105/joss.07957.

1

https://doi.org/10.21105/joss.07957
https://github.com/openjournals/joss-reviews/issues/7957
https://github.com/ethz-randomwalk/polytopewalk
https://doi.org/10.5281/zenodo.15988033
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/martinmodrak
https://github.com/matt-graham
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07957
https://doi.org/10.21105/joss.07957


Large polytopes with sparse constraints are common in many applications (Kook et al., 2022).
The largest human metabolic network RECON3D is modeled as a 13543-dimensional sparse
polytope (King et al., 2015). Moreover, linear programming datasets from NetLib are naturally
in the constrained form, where 𝐴 matrix is sparse. These applications motivate the need for
MCMC algorithms that leverage 𝒦2 form. We implement novel interior-point-method-based
MCMC algorithms optimized for large and sparse constrained polytopes. By exploiting sparsity,
our algorithms scale well in per-iteration cost as a function of increasing dimension. Using the
Dikin Walk, we can perform over 300 steps per second for a 104 dimensional simplex. For
reference, a heuristic for generating 1 sample is 100 steps times the mixing time.

Interior-point-method-based MCMC sampling algorithms on a polytope are modifications of
the Ball Walk (Vempala, 2005), incorporating key concepts from interior-point methods in
optimization. These algorithms operate in two primary steps. First, the algorithm generates a
proposal distribution whose covariance matrix is state-dependent and equal to the inverse of
the Hessian matrix of a specified barrier function, capturing the local geometry of the polytope.
Second, the algorithm employs the Metropolis-Hastings accept-reject step to ensure that its
stationary distribution is uniform on the polytope (Hastings, 1970; Metropolis et al., 1953).
Using a state-dependent proposal distribution that adapts to the polytope’s local geometry,
these MCMC algorithms achieve an improved mixing rate.

In PolytopeWalk, we implement 4 barrier MCMC sampling algorithms and 2 standard ran-
dom walk algorithms (6 total) in the sparse-constrained and full-dimensional formulation.
PolytopeWalk makes meaningful strides in the open-source development of MCMC, speeding
up calculations for sparse high-dimensional sampling. Finally, we provide an implementation of
the Facial Reduction algorithm, described in detail in the Preprocessing Algorithms section.
Additional technical details can be found in a separate paper (Sun & Chen, 2024).

Package Overview
PolytopeWalk is an open-source library written in C++ with Python wrapper code, providing
accelerated MCMC sampling algorithms in both 𝒦1 and 𝒦2 formulation. Source code is written
with Eigen for linear algebra (Guennebaud et al., 2010), glpk for linear programming (Makhorin,
2012), and pybind for Python binding (Jakob et al., 2017). In Python, PolytopeWalk relies
on NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020).

PolytopeWalk

Preprocessing

Facial Reduction

Reduce Polytope

Initializer

Get Initial Point

Sparse Walks Dense Walks

Barrier Walks
Random 
Walks

Random 
Walks

Functionality

GenerateWalk(Polytope, 
Point, Burn In, Thinning)

Barrier Walks

Standard MCMC List

Ball Walk, Hit-and-Run

Barrier MCMC List

Dikin Walk, Vaidya Walk, John 
Walk, Lee Sidford Walk

Figure 1: Code Structure of Package

Sun, & Chen. (2025). PolytopeWalk: Sparse MCMC Sampling over Polytopes. Journal of Open Source Software, 10(111), 7957. https:
//doi.org/10.21105/joss.07957.

2

https://doi.org/10.21105/joss.07957
https://doi.org/10.21105/joss.07957


Random Walk Algorithms
Mixing times refer to the required number of steps to converge to stationary distribution. In
each, 𝑑 refers to the dimension of the polytope and 𝑛 refers to the number of boundaries
(𝒦1 dimensions). In the first 2 walks, 𝑅2/𝑟2 means where the convex body contains a ball of
radius 𝑟 and is mostly contained in a ball of radius 𝑅.

Name Mixing Time Author
Ball Walk 𝑂(𝑑2𝑅2/𝑟2) Vempala (2005)

Hit and Run 𝑂(𝑑2𝑅2/𝑟2) Lovasz (1999)
Dikin Walk 𝑂(𝑛𝑑) Sachdeva et al. (2015)
Vaidya Walk 𝑂(𝑛1/2𝑑3/2) Chen et al. (2018)
John Walk 𝑂(𝑑2.5) Chen et al. (2018)

Lee Sidford Walk 𝑂(𝑑2) Laddha et al. (2019)

Preprocessing Algorithms
PolytopeWalk comes with 2 preprocessing algorithms: initialization and facial reduction.

Initialization: If the user cannot specify a point inside of the polytope to start, PolytopeWalk
provides a class to compute an initial point well within the polytope for both the full-dimensional
formulation and constrained formulation.

Facial Reduction: We adopt the facial reduction algorithm implementation from Drusvyatskiy’s
research (Drusvyatskiy & Wolkowicz, 2017; Im & Wolkowicz, 2023). In the constrained
formulation 𝒦2 = {𝑥 ∈ ℝ𝑑 | 𝐴𝑥 = 𝑏, 𝑥 ⪰𝑘 0}, degeneracy occurs when there is a lack of
strict feasibility in the polytope: there does not exist an 𝑥 ∈ ℝ𝑑 such that 𝐴𝑥 = 𝑏 and 𝑥 ≻𝑘 0.
Thus, degeneracy exists in polytopes when the lower-dimensional polytope is embedded in a
higher dimension. The facial reduction algorithm eliminates variables in the last k dimensions
fixed at 0, thus ensuring numerical stability for sampling.

Package Comparison

Feature PolytopeWalk Volesti PolytopeSampler Polyrun

Constrained Formulation 𝑌 𝑁 𝑌 𝑌
Sparse Friendly 𝑌 𝑁 𝑌 𝑁
C++ Implementation 𝑌 𝑌 𝑌 𝑁
Facial Reduction 𝑌 𝑁 𝑁 𝑁
Dikin Walk 𝑌 𝑌 𝑁 𝑁
Vaidya Walk 𝑌 𝑌 𝑁 𝑁
John Walk 𝑌 𝑌 𝑁 𝑁
Lee-Sidford Walk 𝑌 𝑁 𝑁 𝑁

Table II contrasts the features of PolytopeWalk with Volesti (Chalkis et al., 2025),
PolytopeSampler (Kook et al., 2022), and Polyrun (Ciomek & Kadziński, 2021). Volesti

is implemented in C++ with some of its code represented in the Python library Dingo

(Chalkis et al., 2024). PolytopeSampler only works on Matlab and Polyrun on Java. Thus,
PolytopeWalk adds additional features and novelties not found in other MCMC sampling
packages.

Sun, & Chen. (2025). PolytopeWalk: Sparse MCMC Sampling over Polytopes. Journal of Open Source Software, 10(111), 7957. https:
//doi.org/10.21105/joss.07957.

3

https://faculty.cc.gatech.edu/~vempala/papers/survey.pdf
https://link.springer.com/content/pdf/10.1007/s101070050099.pdf
https://arxiv.org/pdf/1508.01977
https://jmlr.org/papers/v19/18-158.html
https://jmlr.org/papers/v19/18-158.html
https://arxiv.org/abs/1911.05656
https://doi.org/10.21105/joss.07957
https://doi.org/10.21105/joss.07957


Acknowledgements
Much work was done while Yuansi Chen was an assistant professor in the Department of Statis-
tical Science at Duke University. Both authors are partially supported by NSF CAREER Award
DMS-2237322, Sloan Research Fellowship and Ralph E. Powe Junior Faculty Enhancement
Awards.

References
Calès, L., Chalkis, A., Emiris, I. Z., & Fisikopoulos, V. (2023). Practical volume approximation

of high-dimensional convex bodies, applied to modeling portfolio dependencies and financial
crises. Computational Geometry, 109, 101916. https://doi.org/10.1016/j.comgeo.2022.
101916

Chalkis, A., Fisikopoulos, V., Papachristou, M., & Tsigaridas, E. (2025). Volesti: A C++
library for sampling and volume computation on convex bodies. Journal of Open Source
Software, 10(108), 7886. https://doi.org/10.21105/joss.07886

Chalkis, A., Fisikopoulos, V., Tsigaridas, E., & Zafeiropoulos, H. (2024). Dingo: A Python
package for metabolic flux sampling. Bioinformatics Advances, 4(1), vbae037. https:
//doi.org/10.1093/bioadv/vbae037

Ciomek, K., & Kadziński, M. (2021). Polyrun: A Java library for sampling from the bounded
convex polytopes. SoftwareX, 13, 100659. https://doi.org/10.1016/j.softx.2021.100659

Drusvyatskiy, D., & Wolkowicz, H. (2017). The many faces of degeneracy in conic optimiza-
tion. Foundations and Trends® in Optimization, 3(2), 77–170. https://doi.org/10.1561/
2400000011

Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. http://eigen.tuxfamily.org.

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57 (1), 97–109. https://doi.org/10.1093/biomet/57.1.97

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir,
H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G.,
Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., …
Fleming, R. M. T. (2018). Creation and analysis of biochemical constraint-based models:
The COBRA toolbox v3.0. https://arxiv.org/abs/1710.04038

Im, H., & Wolkowicz, H. (2023). Revisiting degeneracy, strict feasibility, stability, in linear
programming. European Journal of Operational Research, 310(2), 495–510. https://doi.
org/10.1016/j.ejor.2023.03.021

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – Seamless operability between
C++11 and Python.

King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson,
B. O., & Lewis, N. E. (2015). BiGG Models: A platform for integrating, standardizing
and sharing genome-scale models. Nucleic Acids Research, 44(D1), D515–D522. https:
//doi.org/10.1093/nar/gkv1049

Kook, Y., Lee, Y. T., Shen, R., & Vempala, S. S. (2022). Sampling with riemannian
Hamiltonian Monte Carlo in a constrained space. Proceedings of the 36th International

Sun, & Chen. (2025). PolytopeWalk: Sparse MCMC Sampling over Polytopes. Journal of Open Source Software, 10(111), 7957. https:
//doi.org/10.21105/joss.07957.

4

https://doi.org/10.1016/j.comgeo.2022.101916
https://doi.org/10.1016/j.comgeo.2022.101916
https://doi.org/10.21105/joss.07886
https://doi.org/10.1093/bioadv/vbae037
https://doi.org/10.1093/bioadv/vbae037
https://doi.org/10.1016/j.softx.2021.100659
https://doi.org/10.1561/2400000011
https://doi.org/10.1561/2400000011
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1093/biomet/57.1.97
https://arxiv.org/abs/1710.04038
https://doi.org/10.1016/j.ejor.2023.03.021
https://doi.org/10.1016/j.ejor.2023.03.021
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.21105/joss.07957
https://doi.org/10.21105/joss.07957


Conference on Neural Information Processing Systems. ISBN: 9781713871088

Makhorin, A. (2012). (GNU linear programming kit) package.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114

Simonovits, M. (2003). How to compute the volume in high dimension? Mathematical
Programming, 97. https://doi.org/10.1007/s10107-003-0447-x

Sun, B., & Chen, Y. (2024). PolytopeWalk: Sparse MCMC Sampling over Polytopes.
https://arxiv.org/abs/2412.06629

Vempala, S. (2005). Geometric random walks: A survey. Combinatorial and Computational
Geometry, 52. https://doi.org/10.1017/9781009701259.033

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Sun, & Chen. (2025). PolytopeWalk: Sparse MCMC Sampling over Polytopes. Journal of Open Source Software, 10(111), 7957. https:
//doi.org/10.21105/joss.07957.

5

https://doi.org/10.1063/1.1699114
https://doi.org/10.1007/s10107-003-0447-x
https://arxiv.org/abs/2412.06629
https://doi.org/10.1017/9781009701259.033
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.07957
https://doi.org/10.21105/joss.07957

	Summary
	Statement of Need
	Package Overview
	Random Walk Algorithms
	Preprocessing Algorithms
	Package Comparison

	Acknowledgements
	References

