
QuantumReservoirPy: A Software Package for Time
Series Prediction
Ola Tangen Kulseng 1*, Stanley Miao2*, Franz G. Fuchs 3*, and
Alexander Stasik 3,4*¶

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada 1 Department of
Physics, Norwegian University of Science and Technology (NTNU), Norway 3 Department of
Mathematics and Cybernetics, SINTEF Digital, Norway 4 Department of Data Science, Norwegian
University of Life Science, Norway ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.07994

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @obliviateandsurrender
• @rudraprsd
• @Abinashbunty

Submitted: 05 March 2025
Published: 10 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Reservoir computing on quantum computers has recently emerged as a potential resource for
time series prediction, owing to its inherent complex dynamics. To advance Quantum Reservoir
Computing (QRC) research, we have developed the Python package QuantumReservoirPy,
which facilitates QRC using quantum circuits as reservoirs.

The package is designed to be easy to use, while staying completely customizable. The resulting
interface, similar to that of reservoirpy (Trouvain et al., 2020), simplifies the development of
quantum reservoirs, and provides logical methods of comparison between reservoir architectures.

Statement of need
Reservoir computing (RC) is a paradigm in machine learning for time series prediction. With
recent developments, it has shown a promising efficacy compared to conventional neural
networks, owing to its relatively simple training process (Tanaka et al., 2019).

The main building block of RC is a dynamical system called a reservoir. By making the
dynamics of the reservoir dependent on the input time series, the state of the reservoir becomes
a high-dimensional, non-linear transformation of the time series. The hope is that such a
low-to-high dimensional encoding enables forecasting using a relatively simple method like
Ridge regression. A reservoir can be virtual, such as a sparsely-connected recurrent neural
network with random fixed weights, termed an echo state network (Jaeger & Haas, 2004), or
even physical, such as a bucket of water (Fernando & Sojakka, 2003). See Figure 1 for an
illustration of a typical RC pipeline.

Encoder

...

Decoder

...

Input x(t) Prediction y(t)Reservoir u(t)

Win Wout

ML

Figure 1: A quantum reservoir system consists of a learning task, an en- and de-coder (red), and the
dynamic system itself (green). In standard RC the machine learning part is linear regression.

Kulseng et al. (2025). QuantumReservoirPy: A Software Package for Time Series Prediction. Journal of Open Source Software, 10(110), 7994.
https://doi.org/10.21105/joss.07994.

1

https://orcid.org/0009-0009-9807-4975
https://orcid.org/0000-0003-3558-503X
https://orcid.org/0000-0003-1646-2472
https://doi.org/10.21105/joss.07994
https://github.com/openjournals/joss-reviews/issues/7994
https://github.com/OpenQuantumComputing/quantumreservoirpy
https://doi.org/10.5281/zenodo.15633043
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/obliviateandsurrender
https://github.com/rudraprsd
https://github.com/Abinashbunty
https://creativecommons.org/licenses/by/4.0/
https://github.com/OpenQuantumComputing/quantumreservoirpy
https://github.com/reservoirpy/reservoirpy
https://doi.org/10.21105/joss.07994


QRC is a proposed method of RC utilizing quantum circuits as reservoirs. Multi-qubit systems
with the capability of quantum entanglement provide compelling non-linear dynamics that
match the requirements for a feasible reservoir. Furthermore, the exponentially-scaling Hilbert
space of large multi-qubit systems support the efficiency and state-storage goals of RC. As
a result, quantum computers have been touted as a viable dynamical system to produce the
intended effects of RC.

Existing implementations of QRC have used proprietary realizations on simulated and actual
quantum computers. The lack of a shared structure between implementations has resulted
in a disconnect in comparing reservoir architectures. In addition, individual implementations
require a certain amount of redundant procedure prior to the involvement of specific concepts.

We observe that there is a need for a common framework for the implementation of QRC.
As such, we have developed QuantumReservoirPy to solve the issues presented in current
QRC research. QuantumReservoirPy is designed to handle every step of the RC pipeline, in
addition to the pre- and post-processing needed in the quantum case. In providing this software
package, we hope to facilitate logical methods of comparison in QRC architecture and enable
a simplified process of creating a custom reservoir from off-the-shelf libraries with minimal
overhead requirements to begin development.

before

during

after

run

predict

QReservoir

Construction Processing

Figure 2: Quantum circuit construction may be customized through the before, during, and after

methods and a timeseries processed with the run and predict methods.

Design and implementation
We intend QuantumReservoirPy to provide flexibility to all possible designs of quantum
reservoirs, with full control over pre-processing, input, quantum circuit operations, measurement,
and post-processing. In particular, we take inspiration from the simple and flexible structure
provided by the ReservoirPy software package reservoirpy (Trouvain et al., 2020).

The construction methods of QuantumReservoirPy serve as sequential operations performed
on the quantum system. All of them may include an arbitrary combination of operations
from the Qiskit Circuit Library. before and after are independent of the time series, and are
applied before and after the time series is processed, respectively. Operations in during are
applied per timestep, and most closely determine the dynamical properties of the reservoir.
Figure 3a demonstrates the aforementioned arrangement, which is implemented as a hidden
intermediary process in a QuantumReservoirPy quantum reservoir.

Kulseng et al. (2025). QuantumReservoirPy: A Software Package for Time Series Prediction. Journal of Open Source Software, 10(110), 7994.
https://doi.org/10.21105/joss.07994.

2

https://github.com/reservoirpy/reservoirpy
https://docs.quantum.ibm.com/api/qiskit/circuit_library
https://doi.org/10.21105/joss.07994


1

circuit:

|0⟩⊗k before during · · · during after

x1 xn

(a) A functional overview of the hidden quantum circuit architecture common to all quantum reservoirs, where xt is the observed
input sequence. The customized before, during, and after methods are applied sequentially to the quantum system.

x1

...
xn


f(x1)

...
f(xn)



run:

encode

circuit

decode

post-processing

(b) The input timeseries is encoded into the quantum cir-
cuit. After measurements are decoded from the quantum
circuit, they are post-processed into the transformed fea-
ture vector.

model

x1

...
xn



p

y1...
yp



predict:

encode

circuit

decode

post-processing

model.predict

(c) The feature vector produced by encoding, decoding, and pre-
processing is used by the model to predict the next step in the timeseries.
This process is repeated p times and returns the resulting prediction
sequence.

Figure 1: The intended functionality of the run and predict method. The observed input sequence is {xt} and the
target sequence {yt}. The reservoir f performs an evolution in time.Figure 3: The intended functionality of the run and predict method. The observed input sequence is
{𝑥𝑡} and the target sequence {𝑦𝑡}. The reservoir 𝑓 performs an evolution in time.

The processing methods do not affect the creation of the reservoirs, but are included to keep
a coherent interface to reservoirpy. Calling run on a time series returns the non-linear
embeddings for each timestep. Depending on the realization of QRC, such as averaging over
multi-shot data, additional post-processing can be included in the run method to achieve the
desired output. Figure 3b provides a visualization of the run method. predict functions as a
complete forecasting process including encoding, decoding, and post-processing. Additionally,
a trained simple machine learning model is used to predict the next step in the timeseries
from the transformed and post-processed data. The resulting prediction is then fed in as input
for the following prediction, which occurs as an iterative process until the specified number
of forecasting steps is reached. At this point, the predict method returns the sequence of
predictions from each iteration. Figure 3c provides a visualization of the predict method.

Package Details

Dependencies
The three main dependencies of QuantumReservoirPy are numpy, qiskit, and scikit-learn, with
python versions above 3.9. Qiskit is deprecating python 3.9 support in the 2.1.0 version, and
the package presented here is developed to support qiskit=2.0.x. As for the other packages,
the supported versions of scikit-learn and numpy follows from their interrelated constraints as
well as the constraint from qiskit. In the install script, we specify numpy>1.17. We strive for
QuantumReservoirPy to support compatibility with existing reservoir computing and quantum
computing workflows.

Much of existing research in QRC is performed on IBM devices and simulators (see Yasuda
et al. (2023) and Suzuki et al. (2022)), programmed through the Qiskit software package.
To minimize disruption in current workflows, QuantumReservoirPy is built as a package to

Kulseng et al. (2025). QuantumReservoirPy: A Software Package for Time Series Prediction. Journal of Open Source Software, 10(110), 7994.
https://doi.org/10.21105/joss.07994.

3

https://github.com/Qiskit/qiskit/releases
https://doi.org/10.21105/joss.07994


interact with Qiskit circuits and backends. It is expected that the user also uses Qiskit in the
customization of reservoir architecture when working with QuantumReservoirPy.

License
QuantumReservoirPy is licensed under the GNU General Public License v3.0. QuantumReservoirPy

also includes derivative work of Qiskit, which is licensed by IBM under the Apache License,
Version 2.0.

Further Development
The authors continue to support and maintain the project. Users may report package issues
and desired features by opening an issue on the public GitHub repository or contacting the
authors by email. Additional opportunities for further development on QuantumReservoirPy

include supplementary built-in processing schemes, expanded features for data visualization,
and reservoir evaluation methods.

Acknowledgements
Work in this project was supported by the NTNU and SINTEF Digital through the International
Work-Integrated-Learning in Artificial Intelligence (IWIL AI) program, in partnership with SFI
NorwAI and the Waterloo Artificial Intelligence Institute (Waterloo.AI). IWIL AI is funded by
the Norwegian Directorate for Higher Education and Skills (HK-dir).

References
Fernando, C., & Sojakka, S. (2003). Pattern recognition in a bucket. Advances in Artificial

Life, 588–597. ISBN: 978-3-540-39432-7

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667), 78–80. https://doi.org/10.1126/
science.1091277

Suzuki, Y., Gao, Q., Pradel, K. C., Yasuoka, K., & Yamamoto, N. (2022). Natural quantum
reservoir computing for temporal information processing. Scientific Reports, 12(1), 1353.
https://doi.org/10.1038/s41598-022-05061-w

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., Numata, H.,
Nakano, D., & Hirose, A. (2019). Recent advances in physical reservoir computing: A
review. Neural Networks, 115, 100–123.

Trouvain, N., Pedrelli, L., Dinh, T. T., & Hinaut, X. (2020). ReservoirPy: An efficient and
user-friendly library to design echo state networks. In I. Farkaš, P. Masulli, & S. Wermter
(Eds.), Artificial neural networks and machine learning – ICANN 2020 (pp. 494–505).
Springer International Publishing. https://doi.org/10.1007/978-3-030-61616-8_40

Yasuda, T., Suzuki, Y., Kubota, T., Nakajima, K., Gao, Q., Zhang, W., Shimono, S., Nurdin,
H. I., & Yamamoto, N. (2023). Quantum reservoir computing with repeated measurements
on superconducting devices. https://arxiv.org/abs/2310.06706

Kulseng et al. (2025). QuantumReservoirPy: A Software Package for Time Series Prediction. Journal of Open Source Software, 10(110), 7994.
https://doi.org/10.21105/joss.07994.

4

https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1038/s41598-022-05061-w
https://doi.org/10.1007/978-3-030-61616-8_40
https://arxiv.org/abs/2310.06706
https://doi.org/10.21105/joss.07994

	Summary
	Statement of need
	Design and implementation
	Package Details
	Dependencies
	License
	Further Development

	Acknowledgements
	References

