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Summary

In recent years, multimodal machine learning has seen significant growth, especially in represen-
tation learning and data generation. Recently, Multimodal Variational Autoencoders (VAEs)
have been attracting growing interest for both tasks, thanks to their versatility, scalability, and
interpretability as latent variable models. They are particularly useful in partially observed
settings, such as medical applications, where available datasets are often incomplete (Antelmi
et al., 2019; Lawry Aguila et al., 2023).

We introduce MultiVae, an open-source Python library offering unified implementations of
multimodal VAEs. It is designed for easy and customizable use of these models on fully or
partially observed data. It facilitates the development and benchmarking of new algorithms
by including standard benchmark datasets, evaluation metrics and tools for monitoring and
sharing models.

Multimodal Variational Autoencoders

Multimodal VAEs aim to: (1) Learn a shared representation from multiple modalities; (2)
Generate one missing modality from available ones.

These models learn a latent representation z of all modalities in a lower dimensional space and
learn to decode z to generate each modality. Let X = (x, 4, ...x,,) contain M modalities.
In the VAE setting, we define an encoder distribution g,(2|X) projecting the observations
to the latent space, and decoders distributions (py(x;|2));<;<as translating the latent code
z back to observations. Those distributions are parameterized by neural networks that are
trained to minimize an objective function derived from variational inference. See Kingma &
Welling (2014) to learn more about the VAE framework and Suzuki & Matsuo (2022) for a
survey on multimodal VAEs.

A key differentiator of multimodal VAEs relies in the choice of the encoder g, (z|X). They fall
into three main categories, depicted in Figure 1. Aggregated models (Shi et al., 2019; Sutter
et al., 2021; Wu & Goodman, 2018) use a mean or product operation to combine modalities,
Joint models (Senellart et al., 2023; Suzuki et al., 2016; Vedantam et al., 2018) use a neural
network taking all modalities as input, and Coordinated models (Tian & Engel, 2019; Wang et
al., 2017) use separate latent spaces with additional similarity constraints.
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Figure 1: Different types of multimodal VAEs.

MultiVae unifies these approaches in a modular and extensible way. Notably, aggregated
models offer a natural way of learning on incomplete datasets: for an incomplete sample X,
the encoding z and the objective function can be computed using only available modalities.
MultiVae is the first library to provide implementations of these models with built-in support
for missing data, using masks during loss computation.

Data Augmentation

Another application of VAEs is Data Augmentation (DA): by sampling new latent codes
z and decoding them, fully synthetic multimodal samples can be generated to augment a
dataset. This approach has been successfully used with unimodal VAEs to augment datasets
for data-intensive deep learning applications (Chadebec et al., 2023). However, it remains
underexplored in the multimodal setting. MultiVae includes a multivae.samplers module
with several sampling strategies to further explore the generative abilities of these models.

Statement of Need

Despite the usefulness of multimodal VAEs, the lack of easy-to-use and verified implementations
might hinder applicative research. MultiVae offers unified implementations, designed to be
accessible even for non-specialists. We ensure reliability by reproducing key results from original
papers whenever possible.

Related libraries contain implementations of Multimodal VAEs: the Multimodal VAE Compari-
son Toolkit (Sejnova et al., 2024), Pixyz (Masahiro Suzuki & Matsuo, 2023) and multi-view-ae
(Aguila et al., 2023) that is most closely related to us and released while we were developing
MultiVae.

We compare in a summarizing table below, the different features of each work. MultiVae differs
and complements existing software packages in key ways: it supports incomplete datasets,
which we consider essential for real-life applications, as well as generative samplers, benchmark
datasets and metrics to facilitate research. It contains a large range of models with a great
flexibility on parameters’ choices and including all implementation details present in the original
codes that improve performance.
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List of Models and Features

We list models and features in each work. Symbol (v'*) indicates that the implementation
includes additional options unavailable in the others.

Masahiro
Suzuki &
Aguila et Sejnova et  Matsuo
Models/ Features Ours al. (2023) al. (2024) (2023)

JMVAE (Suzuki et al., 2016) v
MVAE (Wu & Goodman, 2018) v
MMVAE (Shi et al., 2019)

MoPoE (Sutter et al., 2021)

DMVAE (Lee & Pavlovic, 2021)
MVTCAE (Hwang et al., 2021)
MMVAE+ (Palumbo et al., 2023)
CMVAE (Palumbo et al., 2024)

Nexus (Vasco et al., 2022)

CVAE (Kingma & Welling, 2014)
MHVAE (Dorent et al., 2023)

TELBO (Vedantam et al., 2018)

JNF (Senellart et al., 2023)

CRMVAE (Suzuki & Matsuo, 2023)
MCVAE (Antelmi et al., 2019)

mAAE

DVCCA (Wang et al., 2017)

DCCAE (Wang et al., 2015)

mWAE

mmJSD (Sutter et al., 2020)

gPoE (Lawry Aguila et al., 2023)
Support of Incomplete datasets

GMM Sampler

MAF Sampler, IAF Sampler

Metrics: {Likelihood, Coherences, FIDs,
Reconstruction, Clustering}

Benchmark Datasets

Model sharing via Hugging Face
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Code Quality and Documentation

MultiVae is available on GitHub and Pypi, with full documentation at https://multivae.
readthedocs.io/. The code is unit-tested with 94% coverage. We provide tutorials either as
notebooks or scripts allowing users to get started easily. To further showcase how to use our
library for research applications, we provide detailed case studies in the documentation.
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