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Summary

Calzone is a Python package for evaluating the calibration of probabilistic outputs of classifier
models. It provides a set of functions for visualizing calibration and computing calibration
metrics given a representative dataset with the model’s predictions and the true class labels. The
metrics provided in Calzone include: expected calibration error (ECE), maximum calibration
error (MCE), Hosmer-Lemeshow (HL) test, integrated calibration index (ICl), Spiegelhalter’s
Z-statistic and Cox's calibration slope/intercept. The package is designed with versatility in
mind. Many metrics allow users to adjust binning schemes and choose between top-class or
class-wise calculations.

Statement of need

Classification is one of the most common applications in machine learning. Metrics associated
with discrimination performance (resolution), such as area under the curve (AUC), sensitivity
(Se, true positive rate), and specificity (Sp, 1 - false positive rate) are typically used to
characterize classification performance Hastie et al. (2001). These metrics may be sufficient if
the outputs of the model are not meant to be interpreted as a probability.

However, Diamond (1992) showed that the resolution (i.e., high performance) of a model does
not indicate the reliability/calibration of the model. Calibration is the agreement between
predicted and true probabilities, P(D = 1|p = p) = p, defined as moderate calibration by Van
Calster & Steyerberg (2018), also known as model reliability. Brocker (2009) later showed
that any proper scoring rule can be decomposed into the resolution and reliability. Thus, a
model with high resolution may still lack reliability. In high-risk medical applications such as
computer-aided diagnosis, reliability enables the correct interpretation of model output, and
for downstream treatment decisions.

While existing libraries such as scikit-learn include basic tools like reliability diagrams and
expected calibration error, they lack support for more comprehensive and flexible evaluation
metrics—such as reliability diagrams with error bars, class-conditional calibration error, different
binning schemes or statistical significance testing for miscalibration. This is also the case
with other calibration-focused libraries, such as ml-calibration, uncertainty-toolbox, and
pycaleva. For example, ml-calibration provides advanced controls for plotting reliability
diagrams and computing smooth expected calibration error but does not include statistical
tests for miscalibration (Blasiok & Nakkiran, 2024). The uncertainty-toolbox focuses on
calibration methods rather than assessment (Chung et al., 2021). The pycaleva package
overlaps with many functionalities in Calzone, but it does not support Cox’s calibration analysis,
Wald intervals for reliability, or custom curve fitting methods for expected calibration error
(Martin Weigl, 2022). In contrast, Calzone emphasizes the evaluation of calibration. It
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features a comprehensive set of calibration metrics, statistical tests (e.g., hypothesis testing
for miscalibration), and visualization tools tailored for many types of classification tasks (e.g.,
multi-class metrics). The package is designed to help users not only visualize miscalibration
but also quantify and statistically validate it in a consistent and interpretable way.

Software description

Input data

To evaluate the calibration of a model, users need a representative dataset from the intended
population. The dataset should contain the true class labels and the model's predicted
probabilities. In Calzone, the dataset can be a CSV file or two NumPy arrays containing the
true labels and predicted probabilities.

Reliability Diagram

The reliability diagram is a graphical representation of the calibration (Brocker & Smith, 2007;
Murphy & Winkler, 1977). It groups the predicted probabilities into bins and plots the mean
predicted probability against the empirical frequency in each bin. The reliability diagram can
be used to qualitatively assess the calibration of the model. The confidence intervals of the
empirical frequency are calculated using Wilson's score interval (Wilson, 1927).

from calzone.utils import reliability_diagram
from calzone.vis import plot_reliability_diagram
reliability, confidence, bin_edges, bin_counts = reliability_diagram(
labels,
probs,
num_bins=15,
class_to_plot=1

plot_reliability_diagram(
reliability,
confidence,
bin_counts,
error_bar=True,
title='Reliability diagram'
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Figure 1: Reliability Diagram for class 1 with simulated data.

Calibration metrics

Calzone provides functions to compute various calibration metrics, including methods to
compute expected calibration error and statistical tests to assess calibration. These functions
provide quantitative metrics for users to evaluate the calibration performance of the model.
The CalibrationMetrics() class allows the user to compute the calibration metrics in a more
convenient way. The following are metrics that are currently supported in Calzone:

Expected Calibration Error (ECE) and Maximum Calibration Error (MCE)

Expected calibration error (ECE) and maximum calibration error (MCE) (Guo et al., 2017;
Pakdaman Naeini et al., 2015) measure the average and maximum deviation between predicted
and true probabilities. Calzone supports two binning strategies for ECE: equal-width binning
(ECE-H), which divides the probability range [0, 1] into bins of equal width, and equal-count
binning (ECE-C), which divides predictions into bins containing approximately the same
number of samples. Users can compute these metrics for the top-class (highest probability) or
class-of-interest (one-vs-rest classification).

Hosmer-Lemeshow statistic (HL)

The Hosmer-Lemeshow (HL) test (Hosmer & Lemesbow, 1980) evaluates model calibration
using a chi-square test comparing observed and expected events in bins. The null hypothesis
is that the model is well calibrated. Calzone supports equal-width (ECE-H) and equal-count
(ECE-C) binning. The test statistic is:

M (O, — B, )
j : 1,m 1,m
HL = B ~ X27\ [—9
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m
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where E; ., and O, ,,, are the expected and observed events in the mth bin, N, is the total
observations in the bin, and M is the number of bins. For validation sets, the degrees of
freedom change from M — 2 to M (Hosmer Jr et al., 2013). The increase in degree of freedom
for validation samples has often been overlooked but it is crucial for the test to maintain the
correct Type | error rate. In Calzone, the default is M — 2, adjustable via the df parameter.

Cox’s calibration slope/intercept

Cox's calibration slope/intercept assesses model calibration without binning (Cox, 1958). A
logistic regression is fit with predicted odds (%) as the independent variable and the outcome
as the dependent variable. Perfect calibration is indicated by a slope of 1 and intercept of 0. To
test calibration, fit the intercept with slope fixed at 1; if the intercept differs from 0, the model
is not calibrated. Similarly, fit the slope with intercept fixed at 0; if the slope differs from 1,
the model is not calibrated. Alternatively, fit both simultaneously using a bivariate distribution
(McCullagh & Nelder, 1989). This feature is not in Calzone, but users can manually test using
the covariance matrix.

A slope >1 indicates overconfidence at high probabilities and underconfidence at low prob-
abilities, while a slope <1 indicates the opposite. A positive intercept indicates general
overconfidence. Even with ideal slope and intercept, non-linear miscalibration may still exist.

Integrated calibration index (ICI)

The integrated calibration index (ICl) measures the average deviation between predicted
and true probabilities using curve smoothing techniques (Austin & Steyerberg, 2019). It is

calculated as:
ICI = Z |f(p:) — il

where f is the fitting function and p is the predicted probability. Typically, Locally Weighted
Scatterplot Smoothing (LOWESS) is used, but any curve fitting method can be applied.
Calzone supports both Cox regression—based ICl and LOWESS-based ICl, allowing users to
choose their preferred method. Users should visualize the fitting results to avoid overfitting or
underfitting, as flexible methods like LOWESS are sensitive to span and delta parameters.

Spiegelhalter’s Z-test

Spiegelhalter's Z-test is a test of calibration proposed by Spiegelhalter in 1986 (Spiegelhalter,
1986). It uses the fact that the Brier score can be decomposed into:

1 & 1 1 &
B=—» (z;—p)* == (z;—p)(1—2p) + = > p;(1—p,)
N2 N N

And the test statistic (TS) of Z test is defined as:

_B-E®B) _ Y. @ -p)(1-2)
\/Var(B) Z¢:1<1 —2p;)*p;(1 —p;)

and it is asymptotically distributed as a standard normal distribution.

Metrics class

Calzone also provides a class called CalibrationMetrics() to calculate all the metrics men-
tioned above. The function will return a dictionary containing the metrics' names and their
values. The metrics can be specified as a list of strings. The string ‘all’ can be used to calculate
all the metrics.
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from calzone.metrics import CalibrationMetrics
metrics = CalibrationMetrics(class_to_calculate=1)

metrics.calculate_metrics(
labels,
probs,
metrics='all’

Other features

Confidence intervals

Calzone also provides functionality to compute confidence intervals for all metrics using
bootstrapping. The user can specify the number of bootstrap samples and the confidence
level.

from calzone.metrics import CalibrationMetrics
metrics = CalibrationMetrics(class_to_calculate=1)

CalibrationMetrics.bootstrap(
labels,
probs,
metrics='all',
n_samples=1000

)

and a structured NumPy array will be returned.

Subgroup analysis

Calzone will perform subgroup analysis by default in the command line user interface. If the
user input CSV file contains a subgroup column, the program will compute metrics for the
entire dataset and for each subgroup. A detailed description of the input format can be found
in the documentation.

Prevalence adjustment

Calzone offers prevalence adjustment to correct for differences in disease prevalence between
training and testing data. Calibration is based on posterior probability, so a shift in prevalence
can cause miscalibration. The adjusted probability is calculated as:

’ _o1la _ 77’/(1_77/) =p’
PO =1p=p) =G =550/0 =) ="

where 7 is the testing data prevalence, i’ is the training data prevalence, and p is the predicted
probability. The optimal 1" is found by minimizing cross-entropy loss, or users can specify 1’
directly if known (Chen et al., 2018; Gu & Pepe, 2010; Horsch et al., 2008; Tian et al., 2020).

Multiclass extension

Calzone supports multiclass classification using a 1-vs-rest approach or top-class calibration.
In top-class calibration, class 1 probability is the highest predicted probability, and class 0 is 1
minus this probability. Metrics interpretation may change in this transformation.
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Verification of methods

To ensure the accuracy and reliability of the metrics implemented in Calzone, we performed
comprehensive validation against established external packages. Reliability diagrams were
compared with sklearn.calibration.calibration_curve() (Pedregosa et al., 2011), top-
class ECE and Spiegelhalter's Z scores were validated against MAPIE (Taquet et al., 2022), and
the Hosmer-Lemeshow statistic was checked against ResourceSelection (Lele et al., 2024) in
R. Additional tests were conducted using the relplot and pycaleva Python packages to further
confirm metric consistency. All differences were within 0.1%, demonstrating strong agreement.
These validation tests are documented in test_results.py. Furthermore, synthetic data tests
(see test_metrics.py) were used to confirm the expected behavior of the calibration metrics
under controlled conditions.

Command line interface

Calzone offers a command line interface for visualizing calibration curves, calculating metrics,
and confidence intervals. Run python cal_metrics.py -h for help.
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