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Summary
Propagation of uncertainties is of great utility in the experimental sciences. While the rules of
(linear) uncertainty propagation are straightforward, managing many variables with uncertainty
information can quickly become complicated in large scientific software stacks. Often, this
requires programmers to keep track of many variables and implement custom error propagation
rules for each mathematical operator and function. The Python package AutoUncertainties,
described here, provides a solution to this problem.

Statement of Need
AutoUncertainties is a Python package for uncertainty propagation of independent random
variables. It provides a drop-in mechanism to add uncertainty information to Python scalar
and NumPy (Harris et al., 2020) array objects. It implements manual propagation rules for the
Python dunder math methods, and uses automatic differentiation via JAX (Bradbury et al.,
2018) to propagate uncertainties for most NumPy methods applied to both scalar and NumPy

array variables. In doing so, it eliminates the need for carrying around additional uncertainty
variables or for implementing custom propagation rules for any NumPy operator with a gradient
rule implemented by JAX. Furthermore, in most cases, it requires minimal modification to
existing code—typically only when uncertainties are attached to central values.

Prior Work
To the author’s knowledge, the only existing error propagation library in Python is the
uncertainties (Lebigot et al., 2024) package, which inspired the current work. While
extremely useful, the uncertainties package relies on hand-implemented rules and functions
for uncertainty propagation of array and scalar data. This is mostly trivial for Python’s intrinsic
arithmetic and logical operations such as __add__, however it becomes problematic for more
advanced mathematical operations. For instance, calculating the uncertainty propagation due
to the cosine function requires the import of separate math libraries, rather than being able to
use NumPy directly.

# Using uncertainties v3.2.3

import numpy as np

from uncertainties import unumpy, ufloat

arr = np.array([ufloat(1, 0.1), ufloat(2, 0.002)])

unumpy.cos(arr) # calculation succeeds

np.cos(arr) # raises an exception

The example above illustrates a primary limitation of the uncertainties package: arrays of
ufloat objects cannot be seamlessly integrated with common NumPy functions, and can only
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be operated on by the unumpy suite of functions.

Implementation
For a function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 of 𝑛 independent variables, linear uncertainty propagation can
be computed via the simple rule

𝛿𝑓𝑗(x)2 =
𝑛
∑
𝑖

(
𝜕𝑓𝑗
𝜕𝑥𝑖

𝛿𝑥𝑖)
2

, 𝑗 ∈ [1,𝑚].

To compute 𝜕𝑓𝑗
𝜕𝑥𝑖

for arbitrary 𝑓, the implementation in AutoUncertainties relies on automatic
differentiation provided by JAX. Calls to any NumPy array function or universal function (ufunc)
are intercepted via the __array_function__ and __array_ufunc__ mechanism, and dispatched
to a NumPy wrapper routine that computes the Jacobian matrix via jax.jacfwd.

The user API for the Uncertainty object exposes a number of properties and methods, of
which some of the most important are:

• value -> float: The central value of the object.
• error -> float: The error (standard deviation) of the object.
• relative -> float: The relative error (i.e. error / value) of the object.
• plus_minus(self, err: float) -> Uncertainty: Adds error (in quadrature).

These attributes and methods can be used in the following manner:

from auto_uncertainties import Uncertainty

u1 = Uncertainty(5.25, 0.75)

u2 = Uncertainty(1.85, 0.4)

print(u1) # 5.25 +/- 0.75

print(u1.value) # 5.25

print(u1.error) # 0.75

print(u1.relative) # 0.142857

print(u1.plus_minus(0.5)) # 5.25 +/- 0.901388

# Construct a vector Uncertainty from a sequence.

seq = Uncertainty([u1, u2])

print(seq.value) # [5.25 1.85]

print(seq.error) # [0.75 0.4 ]

Of course, one of the most important aspects of AutoUncertainties is its seamless support
for NumPy:

import numpy as np

from auto_uncertainties import Uncertainty

vals = np.array([0.5, 0.75])

errs = np.array([0.05, 0.3])

u = Uncertainty(vals, errs)

print(np.cos(u)) # [0.877583 +/- 0.0239713, 0.731689 +/- 0.204492]

This is in contrast to the uncertainties package, which would have necessitated using the
unumpy module of hand-implemented NumPy function analogs.

The Uncertainty class automatically determines which methods should be implemented based
on whether it represents a vector uncertainty, or a scalar uncertainty. When instantiated with
sequences or NumPy arrays, vector-based operations are enabled; when instantiated with scalars,
only scalar operations are permitted.
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AutoUncertainties also provides certain exceptions, helper functions, accessors, and display
rounding adjustors, whose details can be found in the documentation.

Support for Pint
AutoUncertainties provides some support for working with objects from the Pint package
(Grecco & Chéron, 2025). For example, Uncertainty objects can be instantiated from
pint.Quantity objects, and then automatically wrapped into new pint.Quantity objects
via the from_quantities method. This guarantees that unit information is preserved when
moving between Uncertainty objects and pint.Quantity objects.

from auto_uncertainties import Uncertainty

from pint import Quantity

val = Quantity(2.24, 'kg')

err = Quantity(0.208, 'kg')

new_quantity = Uncertainty.from_quantities(val, err)

print(new_quantity) # 2.24 +/- 0.208 kilogram

print(type(new_quantity)) # <class 'pint.Quantity'>

Current Limitations and Future Work

Dependent Random Variables
To simplify operations on Uncertainty objects, AutoUncertainties assumes all variables are
independent. This means that, in the case where the programmer assumes dependence between
two or more Uncertainty objects, unexpected and counter-intuitive behavior may arise during
uncertainty propagation. This is a common pitfall when working with Uncertainty objects,
especially since the package will not prevent programmers from manipulating variables in a
manner that implies dependence. Examples of this behavior, along with certain potential
workarounds, can be found here in the documentation. In general, most binary operations
involving the same variable twice will produce undesired results (for instance, performing X -

X, where X is an Uncertainty object, will not result in a standard deviation of zero).

The workarounds are nevertheless cumbersome, and cause AutoUncertainties to fall somewhat
short of the original goals of automated error propagation. In principle, this could be addressed
by storing a full computational graph of the result of chained operations, similar to what is
done in uncertainties. However, the complexity of such a system places it out of scope for
AutoUncertainties at this time.

Further Information
Full API information and additional usage examples can be found on the documentation
website. All source code for the project is stored and maintained on the AutoUncertainties

GitHub repository, where contributions, suggestions, and bug reports are welcome.
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