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Summary

For complex diseases such as cancer, combined drug therapies can enhance the efficacy of
personalized treatment and minimize side effects (Jin et al., 2023). Combined drug therapies
may have a stronger effect than single-drug treatments, a concept referred to as synergy
(Berenbaum, 1989). However, finding synergistic drug combinations is a challenging area of
modern medicine. The vast number of possible drug combinations, even for small sets of
drugs, makes it a complex problem due to the combinatorial growth in possibilities. This fact
necessitates longer testing time in the laboratory experiments and a significant amount of
experimental costs.

PyDruglogics is a Python package that generates optimized Boolean models that represent a
biological system and performs in-silico perturbations of these models to predict synergistic
drug combinations. The implemented method is derived from the pipeline published by Flobak
et al. (2023).

Statement of Need

Logical modeling is a powerful tool that can be used to reduce the costs of identifying synergistic
drug combinations. By formalizing biological networks into logical models, we are able to
simulate the behaviour of large-scale signaling networks and predict responses to perturbations
(Eduati et al. (2020), Niederdorfer et al. (2020), Béal et al. (2021)).

Within this approach, the modeling process constructs a Boolean network to simulate the
biological system, such as a cancer cell, and identify stable states that reflect the system's
long-term behaviour. During the optimization process, the network's rules and topology are
systematically adjusted to match the experimental steady states (e.g., protein activities).
Multiple Boolean models are generated from this calibration process. This model ensemble
is used to simulate the in-silico effects of drug perturbations and predict synergy scores for
each combination. These predicted synergy scores are validated using experimentally measured
outcomes, ensuring their predictive accuracy.

Several previous tools have addressed the challenges of modeling biological networks with
logical modeling approaches. For instance, CellNOptR (Terfve et al., 2012) trains protein
signaling networks to experimental data using multiple logic formalisms. In contrast, our tool
focuses on optimizing Boolean models for predicting synergy scores. Another pipeline that was
introduced in Dorier et al. (2016) uses Boolean models and a genetic algorithm for network
construction and perturbation analysis, focusing on attractor identification and implemented
as a command-line tool. PyDruglogics builds on similar principles by leveraging advanced
computational libraries such as MPBNs (Chatain et al., 2018) and PyBoolNet (Klarner et al.,
2017) to calculate stable states and trap spaces, with the added benefit of a Python-based
implementation.
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The Druglogics software pipeline was an important step forward for simulating biological net-
works with logical models and predicting synergy scores (Zobolas, 2020). Originally, structured
as three separate Java packages, it preserved modular clarity. The Java implementation was
well-designed and robust; nevertheless, the Java and Maven environment presented challenges
in terms of maintainability, installation, and integrability with other community tools (Naldi et
al., 2018).

Noticing these limitations, PyDruglogics provides a practical solution that not only retains
the core functionality of the Java-based pipelines, but also significantly boosts it by reduc-
ing the code complexity, improving the execution time, and introducing new features that
expand its capabilities. By unifying the functionality of the three Java packages into a single
Python package, PyDruglogics simplifies the installation and software maintenance. Example
improvements include the use of a standardized format, BoolNet (Missel et al., 2010), for
loading the models, as well as visualization options (e.g., precision-recall (PR) and receiver
operating characteristic (ROC) curves) and statistical analyses (e.g., repeated subsampling of
the ensemble Boolean models) for robust evaluation of prediction performance. Additional
examples and comparisons of the Python and Java pipelines are available on the project wiki
(Szekeres, 2025). PyDruglogics provides an easy-to-use, flexible, and up-to-date solution for
simulating Boolean networks and predicting synergistic drug combinations for the prioritization
of follow-up lab experiments.

There has been a growing focus on developing tools that prioritize accessibility, reproducibility,
and seamless integration in the logical modeling community. In particular, the CoLoMoTo
Interactive Notebook aims to simplify integration and enables faster collaboration (Naldi et
al., 2018). PyDruglogics adopts this approach by integrating into the CoLoMoTo Docker,
enabling compatibility with other tools so that researchers can combine methodologies and
share results more effectively. The comprehensive documentation for PyDrugLogics is provided
on the package website (Szekeres, 2024a), along with a detailed tutorial (Szekeres, 2024b).
The package is available on PyPl (Szekeres, 2024c), offering a simple installation process and
integration into Python workflows.

Brief Overview

The PyDruglogics pipeline involves two main stages: calibration and prediction.

The calibration (tratin) function is responsible for loading a Boolean model for a particular
biological system (e.g., a cancer cell) or the interactions for automatically constructing such a
model. The next step is the optimization process that uses the PyGAD Genetic Algorithm
(Gad, 2023) for finding the best set of Boolean models that fit the training data (e.g., protein
measurements of the cancerous cell). The optimization process changes the model's operators
and topology to ensure its behaviour fits the training data.

In the prediction (predict) function, the calibrated models are used to perform in-silico
perturbations to simulate the effect of various drug treatments and their combinations. The
perturbations represent changes to the system to mimic drug effects such as inhibition or
activation of the affected proteins. The results of the perturbations are analyzed, and the
predicted viability scores, which represent the system's response to drug treatments, are
computed. Synergy scores are then derived from these viability scores, quantifying drug
interactions and classifying combinations by synergistic potential. To verify the accuracy of the
predictions, the pipeline requires the knowledge of the observed synergies, which serve as the
ground truth, and they are typically derived from experimental datasets or literature sources.
Using the observed synergies (binary labels: 0 for non-synergistic and 1 for synergistic) as
the ground truth, binary classification metrics such as the ROC and PR AUC (area under the
curve) are generated to evaluate how well the predicted synergy scores distinguish between
synergistic and non-synergistic drug combinations.
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