
GBNet: Gradient Boosting packages integrated into
PyTorch
Michael Horrell 1

1 Independent Researcher, USA
DOI: 10.21105/joss.08047

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @animikhaich
• @bahung
• @IBCHgenomic

Submitted: 17 March 2025
Published: 07 July 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
GBNet is a Python software package that integrates the powerful Gradient Boosting Machines
(GBMs) (Friedman, 2001) packages XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et
al., 2017) with PyTorch (Paszke et al., 2019), a widely-used deep learning library. Gradient
boosting is a popular machine learning technique known for its accuracy in predictive modeling.
XGBoost and LightGBM are industry-standard implementations of GBMs recognized for their
speed and strong performance across numerous applications (Kaggle, 2021). However, these
libraries primarily handle standard machine learning tasks and present challenges when applied
to complex or non-standard modeling scenarios. For example, using non-standard loss functions
with either XGBoost or LightGBM requires manual computation of gradients and Hessians, a
prohibitively difficult requirement for even moderately complex losses.

PyTorch is popular for its ease of defining and training neural networks. Its computational graph
provides automatic differentiation capabilities. GBNet leverages these capabilities, linking
gradient and Hessian calculations from PyTorch to XGBoost or LightGBM models. This
integration allows users to construct and train complex hybrid models that combine gradient
boosting with neural network architectures. GBNet significantly broadens the scope of problems
that can be solved with the world-leading gradient boosting software packages.

Statement of need
While XGBoost and LightGBM are industry-standard solutions for tabular data machine
learning problems, they offer limited flexibility in defining complex model architectures tailored
to specific problem types. Users wishing to define custom loss functions, novel architectures,
or other advanced modeling scenarios face substantial difficulty due to the complex gradient
and Hessian calculations required by both XGBoost and LightGBM.

As a simple motivating example, consider a forecasting model that combines a linear trend
with a periodic component. A natural specification of this model might be:

Forecast(𝑡) = 𝑡𝛽 + PeriodicFn(𝑡)

where 𝛽 is a constant defining the trend and PeriodicFn is modeled using a GBM. Despite its
relative simplicity, this model cannot be easily fit using XGBoost or LightGBM alone.

GBNet addresses this limitation by providing PyTorch Modules that wrap XGBoost and
LightGBM. These Modules serve as model building blocks like any other PyTorch Module.
Valid code defining a PyTorch module implementing the above forecast model is given in just
a few lines:

import torch

from gbnet.xgbmodule import XGBModule

Horrell. (2025). GBNet: Gradient Boosting packages integrated into PyTorch. Journal of Open Source Software, 10(111), 8047. https:
//doi.org/10.21105/joss.08047.

1

https://orcid.org/0009-0001-3091-0342
https://doi.org/10.21105/joss.08047
https://github.com/openjournals/joss-reviews/issues/8047
https://github.com/mthorrell/gbnet
https://doi.org/10.5281/zenodo.15779198
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/animikhaich
https://github.com/bahung
https://github.com/IBCHgenomic
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08047
https://doi.org/10.21105/joss.08047


class ForecastModule(torch.nn.Module):

def __init__(self, n, d):

super().__init__()

self.linear = torch.nn.Linear(d, 1)

self.xgb = XGBModule(n, d, 1)

def forward(self, t):

return self.linear(t) + self.xgb(t)

def gb_step(self):

self.xgb.gb_step()

The key components of this code are XGBModule, the wrapper for XGBoost, and gb_step(), a
method that updates the underlying XGBoost model. The gb_step() method is called after
each forward pass to update the gradient boosting model, while PyTorch’s autograd system
handles the updates for the linear component.

As demonstrated in this example, once an instance of XGBModule is defined, it can be combined
with any other model logic supported by PyTorch. This straightforward example illustrates
GBNet’s ease-of-use in defining complex models.

GBNet is the first software package to combine state-of-the-art gradient boosting software
with neural network packages in a near-seamless and general way. Other packages either
solve similar problems by providing Gradient Boosting packages with slightly more complex
capabilities (Horrell, 2020; Ingas, 2024) or, when combining GBMs and Neural Networks, resort
to different types of stacking or other more complex combinations (Balestriero, 2017; Ke et
al., 2019; Kontschieder et al., 2015; Popov et al., 2019). GBNet allows users of the world’s
best gradient boosting packages to explore many of the rich architectural possibilities available
through PyTorch.

Research Applications
Several research areas stand to benefit from GBNet. The package includes a forecast-
ing application (gbnet.models.forecasting) that demonstrates improved performance over
Meta’s Prophet algorithm (Taylor & Letham, 2018) on a set of benchmarks, as shown in
the notebook linked here. The package also provides an ordinal regression implementation
(gbnet.models.ordinal_regression) featuring the ordinal loss, which is complex, has fittable
parameters, and is not included in either XGBoost or LightGBM. A notebook here demonstrates
the ordinal regression application.

More broadly, GBNet may benefit any researcher looking to leverage non-parametric methods
while maintaining structural control over their model. In particular, researchers using PyTorch
primarily for its ability to produce outputs suited for their application may prefer GBNet at
times because XGBoost and LightGBM are robust estimators. Neural networks can be finicky,
requiring many small adjustments and normalizations, while GBMs often work reliably with
minimal tuning.

Research into network architectures specifically tailored for GBMs may also hold intrinsic
value. Several classic architectures previously explored exclusively with pure neural network
methods are now accessible for GBMs through GBNet. Important concepts and methods
such as embeddings (Mikolov et al., 2013), autoencoders (Hinton & Zemel, 1993), variational
methods (Kingma et al., 2013), and contrastive learning (Hadsell et al., 2006) may exhibit
novel and interesting properties when integrated with GBMs.

Horrell. (2025). GBNet: Gradient Boosting packages integrated into PyTorch. Journal of Open Source Software, 10(111), 8047. https:
//doi.org/10.21105/joss.08047.

2

https://github.com/mthorrell/gbnet/blob/main/examples/simple_forecast_example.ipynb
https://github.com/mthorrell/gbnet/blob/main/examples/ordinal_regression_comparison.ipynb
https://doi.org/10.21105/joss.08047
https://doi.org/10.21105/joss.08047


Software Description and Examples
GBNet comprises two primary sets of submodules:

• gbnet.xgbmodule, gbnet.lgbmodule, gbnet.gblinear: Contain PyTorch Module classes
(XGBModule, LGBModule and GBLinear) that integrate XGBoost, LightGBM and a linear
booster respectively.

• gbnet.models: Includes practical implementations of models using either XGBModule

or LGBModule. Currently there are two implementations. gbnet.models.forecasting

provides a scikit-learn interface (Pedregosa et al., 2011) for an optimized version of the
forecast model shown above. gbnet.models.ordinal_regression provides a scikit-learn
interface for ordinal regression.

Forecasting Example
gbnet.models.forecasting.Forecast is compared to the Meta Prophet algorithm over 500
independent trials as reported in the following table. Each trial consists of selecting a dataset
uniformly at random, selecting a training cutoff uniformly at random, selecting a test period
cutoff uniformly at random, and finally training a model and testing performance. The
default gbnet.models.forecasting.Forecast beats Prophet in 74% of trials and has a higher
than 50% win rate on 8 out of 9 datasets when comparing RMSE values. In addition,
gbnet.models.forecasting.Forecast, when it has the losing RMSE, tends to lose by less in
comparison to Prophet.

Dataset
N
trials

GBNet win
Rate (%)

Avg. GBNet Losing
RMSE Ratio

Avg. Prophet Losing
RMSE Ratio

Air Passengers 50 74% 1.42 1.64
Pedestrians Covid 56 66% 1.21 1.73
Pedestrians
Multivariate

54 70% 1.34 1.35

Retail Sales 75 81% 1.26 1.97
WP Log R 59 90% 2.19 2.60
WP Log R
Outliers1

60 77% 1.40 2.56

WP Log R
Outliers2

49 71% 1.85 2.47

WP Log Peyton
Manning

45 44% 1.36 2.22

Yosemite Temps 52 85% 2.16 2.93

Code for these results is here.

Ordinal Regression Example
Ordinal regression fits a model with a 1-dimensional output, 𝐹(𝑋) ∈ ℝ, that is thresholded at
different points to achieve an ordinal classification. McCullagh (1980) introduces a cumulative
logit model with thresholds to define a consistent statistical model for ordinal regression.
gbnet.models.ordinal_regression.GBOrd implements the cumulative logit model. Specifi-
cally GBOrd fits threshold parameters 𝜃𝑖 ∈ ℝ and a GBM, 𝐹(𝑋), to optimize the likelihood
defined by

𝑃(𝑦 <= 𝑖|𝑋) = 𝜎(𝜃𝑖 − 𝐹(𝑋)).

Horrell. (2025). GBNet: Gradient Boosting packages integrated into PyTorch. Journal of Open Source Software, 10(111), 8047. https:
//doi.org/10.21105/joss.08047.

3

https://github.com/mthorrell/gbnet/blob/main/examples/simple_forecast_example.ipynb
https://doi.org/10.21105/joss.08047
https://doi.org/10.21105/joss.08047


Fitting this ordinal regression model using GBMs without a tool like GBNet is complex: (1)
neither XGBoost nor LightGBM offer this objective; (2) calculating the negative log-likelihood
(that is, its loss) has multiple steps—a cumulative distribution function is calculated and then
differenced to find the likelihood; (3) the objective has parameters, 𝜃𝑖, that need to be fit
along with 𝐹(𝑋).

GBOrd leverages XGBModule and LGBModule and native PyTorch functionality to make fitting
an ordinal regression model straightforward using either XGBoost or LightGBM back-ends. As
an illustration, Figure 1 shows the fitted probabilities on the Ailerons dataset from Gagolewski
(2022). The breakpoint parameters are fit via gradient descent simultaneously with the GBM.
The uneven spacing of the breakpoints in the figure demonstrates that the model has learned
a more optimal separation between classes rather than using evenly spaced breakpoints.

Figure 1: Fitted ordinal regression probabilities for the Ailerons dataset

A reproducible benchmark comparing GBOrd to alternative approaches across several data sets
is provided here.

Acknowledgements
The author gratefully acknowledges insightful feedback from Joe Guinness.

References
Balestriero, R. (2017). Neural decision trees. arXiv Preprint arXiv:1702.07360.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16), 785–794. https://doi.org/10.1145/2939672.2939785

Horrell. (2025). GBNet: Gradient Boosting packages integrated into PyTorch. Journal of Open Source Software, 10(111), 8047. https:
//doi.org/10.21105/joss.08047.

4

https://github.com/mthorrell/gbnet/blob/main/examples/ordinal_regression_comparison.ipynb
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.21105/joss.08047
https://doi.org/10.21105/joss.08047


Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Gagolewski, M. (2022). Ordinal regression. https://github.com/gagolews/teaching-data/tree/
master/ordinal_regression.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an invariant
mapping. 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), 2, 1735–1742. https://doi.org/10.1109/cvpr.2006.100

Hinton, G. E., & Zemel, R. (1993). Autoencoders, minimum description length and Helmholtz
free energy. Advances in Neural Information Processing Systems, 6.

Horrell, M. (2020). Wide boosting. CoRR, abs/2007.09855. https://arxiv.org/abs/2007.09855

Ingas, A. (2024). OrdinalGBT - gradient boosting for ordinal regression. https://github.com/
adamingas/ordinalgbt

Kaggle. (2021). 2021 Kaggle machine learning & data science survey. Kaggle, https:
//www.kaggle.com/c/kaggle-survey-2021.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017).
LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS ’17), 3149–3157.

Ke, G., Xu, Z., Zhang, J., Bian, J., & Liu, T.-Y. (2019). DeepGBM: A deep learning framework
distilled by GBDT for online prediction tasks. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 384–394.

Kingma, D. P., Welling, M., & others. (2013). Auto-encoding variational Bayes. Banff,
Canada.

Kontschieder, P., Fiterau, M., Criminisi, A., & Rota Bulo, S. (2015). Deep neural decision
forests. Proceedings of the IEEE International Conference on Computer Vision, 1467–1475.
https://doi.org/10.1109/ICCV.2015.172

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical
Society. Series B (Methodological), 42(2), 109–142. http://www.jstor.org/stable/2984952

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed represen-
tations of words and phrases and their compositionality. Advances in Neural Information
Processing Systems, 26.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch:
An imperative style, high-performance deep learning library. Advances in Neural Infor-
mation Processing Systems (NeurIPS 2019), 8024–8035. https://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Popov, S., Morozov, S., & Babenko, A. (2019). Neural oblivious decision ensembles for deep
learning on tabular data. arXiv Preprint arXiv:1909.06312.

Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1),
37–45. https://doi.org/10.1080/00031305.2017.1380080

Horrell. (2025). GBNet: Gradient Boosting packages integrated into PyTorch. Journal of Open Source Software, 10(111), 8047. https:
//doi.org/10.21105/joss.08047.

5

https://doi.org/10.1214/aos/1013203451
https://github.com/gagolews/teaching-data/tree/master/ordinal_regression
https://github.com/gagolews/teaching-data/tree/master/ordinal_regression
https://doi.org/10.1109/cvpr.2006.100
https://arxiv.org/abs/2007.09855
https://github.com/adamingas/ordinalgbt
https://github.com/adamingas/ordinalgbt
https://www.kaggle.com/c/kaggle-survey-2021
https://www.kaggle.com/c/kaggle-survey-2021
https://doi.org/10.1109/ICCV.2015.172
http://www.jstor.org/stable/2984952
https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.21105/joss.08047
https://doi.org/10.21105/joss.08047

	Summary
	Statement of need
	Research Applications

	Software Description and Examples
	Forecasting Example
	Ordinal Regression Example

	Acknowledgements
	References

