
grepq: A Rust application that quickly filters FASTQ
files by matching sequences to a set of regular
expressions
Nicholas D. Crosbie 1¶

1 Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia ¶ Corresponding
author

DOI: 10.21105/joss.08048

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @Yaseswini
• @Ashastry2

Submitted: 17 January 2025
Published: 30 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Regular expressions (regex) (Kleene, 1951) have been an important tool for finding patterns in
biological codes for decades (Hodgman, 2000 and citations therein), and unlike fuzzy-finding
approaches, do not result in approximate matches. The performance of regular expressions
can be slow, however, especially when searching for matching patterns in large files. grepq
is a Rust application that quickly filters FASTQ files by matching sequences to a set of
regular expressions. grepq is designed with a focus on performance and scalability, is easy
to install and easy to use, enabling users to quickly filter large FASTQ files, to enumerate
named and unnamed variants, to update the order in which patterns are matched against
sequences through in-built tune and summarise commands, and optionally, to output a SQLite
file for further sequence analysis. grepq is open-source and available on GitHub, Crates.io and
bioconda.

Statement of need
The ability to quickly filter FASTQ files by matching sequences to a set of regular expressions
is an important task in bioinformatics, especially when working with large datasets. The
importance and challenge of this task will only grow as sequencing technologies continue to
advance and produce ever larger datasets (Katz et al., 2022). The uses cases of grepq are
diverse, and include pre-processing of FASTQ files before downstream analysis, quality control
of sequencing data, and filtering out unwanted sequences. Where decisions need be made
quickly, such as in a clinical settings (Bachurin et al., 2024), biosecurity (Valdivia-Granda,
2012), and wastewater-based epidemiology in support of public health measures (Choi et al.,
2018; Merrett et al., 2024; Sims & Kasprzyk-Hordern, 2020; Xylogiannopoulos, 2021), the
ability to quickly filter FASTQ files and enumerate named and unnamed variants by matching
sequences to a set of regular expressions is attractive as it circumvents the need for more
time-consuming bioinformatic workflows.

Regular expressions are a powerful tool for matching sequences, but they can be slow and
inefficient when working with large datasets. Furthermore, general purpose tools like grep
(Free Software Foundation, 2023) and ripgrep (A. Gallant, 2025) are not optimised for the
specific task of filtering FASTQ files, and occasionally yield false positives as they scan the
entire FASTQ record, including the sequence quality field. Tools such awk (Aho et al., 1988)
and gawk (Free Software Foundation, 2024) can be used to filter FASTQ files without yielding
false positives, but they are significantly slower than grepq and can require the development of
more complex scripts to achieve the same result.

Crosbie. (2025). grepq: A Rust application that quickly filters FASTQ files by matching sequences to a set of regular expressions. Journal of Open
Source Software, 10(110), 8048. https://doi.org/10.21105/joss.08048.

1

https://orcid.org/0000-0002-0319-4248
https://doi.org/10.21105/joss.08048
https://github.com/openjournals/joss-reviews/issues/8048
https://github.com/Rbfinch/grepq
https://doi.org/10.5281/zenodo.15612061
https://lpantano.github.io/
https://orcid.org/0000-0002-3859-3249
https://github.com/Yaseswini
https://github.com/Ashastry2
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08048


Implementation
grepq obtains its performance and reliability, in part, by using the seq_io (Schlegel & Seyboldt,
2025) and regex (Gallant & others, 2025b) libraries. The seq_io library is a well-tested library
for parsing FASTQ files, designed to be fast and efficient, and which includes a module for
parallel processing of FASTQ records through multi-threading. The regex library is designed
to work with regular expressions and sets of regular expressions, and is known to be one of
the fastest regular expression libraries currently available (Gallant & others, 2025a). The
regex library supports Perl-like regular expressions without look-around or backreferences
(documented at https://docs.rs/regex/1.*/regex/#syntax).

Feature set
• support for presence and absence (inverted) matching of a set of regular expressions
• IUPAC ambiguity code support (N, R, Y, etc.)
• support for gzip and zstd compression (reading and writing)
• JSON support for pattern file input and tune and summarise command output, allowing

named regular expression sets and named regular expressions (pattern files can also be
in plain text)

• the ability to:
– set predicates to filter FASTQ records on the header field (= record ID line) using a

regular expression, minimum sequence length, and minimum average quality score
(supports Phred+33 and Phred+64)

– output matched sequences to one of four formats (including FASTQ and FASTA)
– tune the pattern file and enumerate named and unnamed variants with the tune

and summarise commands: these commands will output a plain text or JSON
file with the patterns sorted by their frequency of occurrence in the input FASTQ
file or gzip-compressed FASTQ file (or a user-specified number of total matches).
This can be useful for optimising the pattern file for performance, for example by
removing patterns that are rarely matched and reordering nucleotides within the
variable regions of the patterns to improve matching efficiency

– count and summarise the total number of records and the number of matching
records (or records that don’t match in the case of inverted matching) in the input
FASTQ file

– bucket matching sequences to separate files named after each regexName with the
–bucket flag, in any of the four output formats

Other than when the inverted command is given, output to a SQLite database is supported
with the writeSQL option. The SQLite database will contain a table called fastq_data with the
following fields: the fastq record (header, sequence and quality fields), length of the sequence
field (length), percent GC content (GC), percent GC content as an integer (GC_int), number
of unique tetranucleotides in the sequence (nTN), number of unique canonical tetranucleotides
in the sequence (nCTN), percent tetranucleotide frequency in the sequence (TNF), percent
canonical tetranucleotide frequency in the sequence (CTNF), and a JSON array containing the
matched regex patterns, the matches and their position(s) in the FASTQ sequence (variants).
If the pattern file was given in JSON format and contained a non-null qualityEncoding field,
then the average quality score for the sequence field (average_quality) will also be written.
The –num-tetranucleotides option can be used to limit the number of tetranucleotides written
to the TNF field of the fastq_data SQLite table, these being the most or equal most frequent
tetranucleotides in the sequence field of the matched FASTQ records. A summary of the
invoked query (pattern and data files) is written to a second table called query.

Crosbie. (2025). grepq: A Rust application that quickly filters FASTQ files by matching sequences to a set of regular expressions. Journal of Open
Source Software, 10(110), 8048. https://doi.org/10.21105/joss.08048.

2

https://docs.rs/regex/1.*/regex/#syntax
https://doi.org/10.21105/joss.08048


Performance
The performance of grepq was compared to that of fqgrep, seqkit grep, ripgrep, grep, awk,
and gawk using the benchmarking tool hyperfine. The test conditions and results are shown in
Table 1, Table 2 and Table 3 (see supplemental).

Testing and availability
grepq is open-source and available at GitHub (https://github.com/Rbfinch/grepq), Crates.io
(https://crates.io/crates/grepq) and bioconda (https://anaconda.org/bioconda/grepq), and is
distributed under the MIT license. It has been tested on macOS 15.0.1 (Apple M1 Max) and
Linux Ubuntu 20.04.6 LTS (AMD EPYC 7763 64-Core Processor). For more information on
the testing of grepq, see the README.md file in the grepq repository on GitHub.

Conclusion
The performance of grepq was compared to that of fqgrep, seqkit grep, ripgrep, grep, awk,
and gawk using the benchmarking tool hyperfine. For an uncompressed FASTQ file 874MB in
size, containing 869,034 records, grepq was significantly faster than the other tools tested,
with a speedup of 1797 times relative to grep, 864 times relative to awk, and 19 times relative
to ripgrep. For a larger uncompressed FASTQ file (104GB in size, and containing 139,700,067
records), grepq was 4.4 times faster than ripgrep and marginally slower or of equivalent speed
to ripgrep where the same large file was gzip-compressed. When coupled with its exceptional
runtime performance, grepq’s feature set make it a powerful and flexible tool for filtering large
FASTQ files.

Acknowledgements
I thank the authors of the seq_io, regex, mimalloc and flate2 libraries and hyperfine bench-
marking tool, and of the ripgrep and fqgrep tools for providing inspiration for grepq.

Conflicts of interest
The author declares no conflicts of interest.

References
Aho, A. V., Kernighan, B. W., & Weinberger, P. J. (1988). The AWK programming language.

https://www.cs.princeton.edu/~bwk/btl.mirror/

Bachurin, S. S., Yurushkin, M. V., Slynko, I. A., Kletskii, M. E., Burov, O. N., & Berezovskiy,
D. P. (2024). Structural peculiarities of tandem repeats and their clinical significance.
Biochemical and Biophysical Research Communications, 692, 149349. https://doi.org/10.
1016/j.bbrc.2023.149349

Choi, P. M., Tscharke, B. J., Donner, E., O’Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie,
R., O’Malley, E., Crosbie, N. D., Thomas, K. V., & others. (2018). Wastewater-based
epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry,
105, 453–469. https://doi.org/10.1016/j.trac.2018.06.004

Free Software Foundation. (2023). GNU grep 3.11. Free Software Foundation. https:
//www.gnu.org/software/grep/manual/grep.html

Crosbie. (2025). grepq: A Rust application that quickly filters FASTQ files by matching sequences to a set of regular expressions. Journal of Open
Source Software, 10(110), 8048. https://doi.org/10.21105/joss.08048.

3

https://github.com/Rbfinch/grepq/blob/main/paper/supplemental.pdf
https://github.com/Rbfinch/grepq
https://crates.io/crates/grepq
https://anaconda.org/bioconda/grepq
https://www.cs.princeton.edu/~bwk/btl.mirror/
https://doi.org/10.1016/j.bbrc.2023.149349
https://doi.org/10.1016/j.bbrc.2023.149349
https://doi.org/10.1016/j.trac.2018.06.004
https://www.gnu.org/software/grep/manual/grep.html
https://www.gnu.org/software/grep/manual/grep.html
https://doi.org/10.21105/joss.08048


Free Software Foundation. (2024). GAWK: Effective AWK programming: A user’s guide for
GNU awk, for the 5.3.1. Free Software Foundation. https://www.gnu.org/software/gawk/
manual/gawk.html

Gallant, A. (2025). Ripgrep: Recursively search the current directory for lines matching a
pattern (Version 14.1.1). https://github.com/BurntSushi/ripgrep

Gallant, & others. (2025a). rebar. https://github.com/BurntSushi/rebar

Gallant, & others. (2025b). regex (Version 0.3.2). https://github.com/rust-lang/regex

Hodgman, T. C. (2000). A historical perspective on gene/protein functional assignment.
Bioinformatics, 16(1), 10–15. https://doi.org/10.1093/bioinformatics/16.1.10

Katz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J. R., & O’Sullivan, C. (2022).
The sequence read archive: A decade more of explosive growth. Nucleic Acids Research,
50(D1), D387–D390. https://doi.org/10.1093/nar/gkab1053

Kleene, S. (1951). Representationof events in nerve nets and finite automata. CE Shannon
and J. McCarthy. https://doi.org/10.1515/9781400882618-002

Merrett, J. E., Nolan, M., Hartman, L., John, N., Flynn, B., Baker, L., Schang, C., McCarthy,
D., Lister, D., Cheng, N. N., & others. (2024). Highly sensitive wastewater surveillance
of SARS-CoV-2 variants by targeted next-generation amplicon sequencing provides early
warning of incursion in victoria, australia. Applied and Environmental Microbiology, 90(8),
e01497–23. https://doi.org/10.1128/aem.01497-23

Schlegel, M., & Seyboldt, A. (2025). seq_io: FASTA and FASTQ parsing and writing in Rust
(Version 0.3.2). https://github.com/markschl/seq_io

Sims, N., & Kasprzyk-Hordern, B. (2020). Future perspectives of wastewater-based epi-
demiology: Monitoring infectious disease spread and resistance to the community level.
Environment International, 139, 105689. https://doi.org/10.1016/j.envint.2020.105689

Valdivia-Granda, W. A. (2012). Biodefense oriented genomic-based pathogen classification
systems: Challenges and opportunities. Journal of Bioterrorism & Biodefense, 3(1),
1000113. https://doi.org/10.4172/2157-2526.1000113

Xylogiannopoulos, K. F. (2021). Pattern detection in multiple genome sequences with
applications: The case of all SARS-CoV-2 complete variants. bioRxiv, 2021–2004. https:
//doi.org/10.1101/2021.04.14.439840

Crosbie. (2025). grepq: A Rust application that quickly filters FASTQ files by matching sequences to a set of regular expressions. Journal of Open
Source Software, 10(110), 8048. https://doi.org/10.21105/joss.08048.

4

https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/rebar
https://github.com/rust-lang/regex
https://doi.org/10.1093/bioinformatics/16.1.10
https://doi.org/10.1093/nar/gkab1053
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1128/aem.01497-23
https://github.com/markschl/seq_io
https://doi.org/10.1016/j.envint.2020.105689
https://doi.org/10.4172/2157-2526.1000113
https://doi.org/10.1101/2021.04.14.439840
https://doi.org/10.1101/2021.04.14.439840
https://doi.org/10.21105/joss.08048

	Summary
	Statement of need
	Implementation
	Feature set
	Performance
	Testing and availability
	Conclusion
	Acknowledgements
	Conflicts of interest
	References

