
Virtual Engineering: Python framework for engineering
process design
Olga Doronina1¶, Ethan Young1, Nicholas Carlson1, Andrew Glaws1,
Hariswaran Sitaraman1, and Jonathan Stickel2

1 National Renewable Energy Laboratory, Golden, CO, United States 2 Carbon America, Arvada, CO,
United States ¶ Corresponding author

DOI: 10.21105/joss.08050

Software
• Review
• Repository
• Archive

Editor: Prashant Jha
Reviewers:

• @victoraalves
• @mustafaalsalmi1999

Submitted: 12 November 2024
Published: 01 October 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Virtual Engineering (VE) is a Python software framework designed to accelerate the research
and development of engineering processes that are fundamentally defined by multiple unit
operations executed in series. VE supports a wide variety of different multi-physics models and
integrates them to simulate a complete end-to-end process. To automate the execution of
this model sequence, VE provides (i) a robust method to communicate between models, (ii) a
high-level, user-friendly interface to set model parameters and enable optimization, and (iii)
an overall model-agnostic approach that allows new computational units to be swapped in
and out of workflows. Although the VE framework was developed to support the biochemical
conversion of biomass to fuel, we have designed each component to easily accommodate new
domains and unit models.

Statement of need
Many industrial and manufacturing operations consist of a sequence of discrete processing
steps, including physicochemical transformations, to produce a final product. Often, optimizing
the performance of each individual step—such as yield or energy efficiency—does not lead to
the overall best outcome. Therefore, it is essential to ensure connectivity between each step
and optimize the whole process. This process optimization can depend not only on operating
parameters for each step but also on the choice and order of these steps.

Numerical simulations that can support the analysis and optimization of such systems frequently
require linking multiple individual models together—each associated with different steps in
the overall operational process—so that the outputs of one model can inform the inputs of
the next. These models can span multiple levels of physical fidelity and computational costs.
Virtual Engineering (VE) is a Python package that enables the creation of this type of model
sequence.

VE was originally developed to support the simulation and optimization of the biochemical
conversion of lignocellulosic biomass to fuels. This bioconversion process was modeled by
linking previously developed computational models as three important unit operations (Figure
1): (i) the pretreatment of the feedstock to make cellulose more accessible (Sitaraman et
al., 2015), (ii) an enzymatic hydrolysis step to digest lignocellulose into sugars (Lischeske &
Stickel, 2019; Sitaraman et al., 2019), and (iii) a bioconversion step to convert sugars into
products in a bioreactor (Rahimi et al., 2018). Finally, the capital and operating costs of the
process, and the product’s (in this case, ethanol) subsequent minimum feasible selling price
through discounted cash flow analysis, were calculated using an Aspen Plus process simulation
with techno-economic analysis (TEA) (Humbird et al., 2011).

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

1

https://doi.org/10.21105/joss.08050
https://github.com/openjournals/joss-reviews/issues/8050
https://github.com/NREL/VirtualEngineering
https://doi.org/10.5281/zenodo.17227544
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/victoraalves
https://github.com/mustafaalsalmi1999
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08050

Pretreatment

Dolfinx
0.25 CPUh

Enzymatic
Hydrolysis

OpenFOAM
2500 CPUh

GP surrogate
10-4 CPUh

Bioreactor

OpenFOAM
250 CPUh

GP surrogate
10-4 CPUh

𝜌𝑔 , 𝜌𝑥 , 𝜌𝑓 Oxygen
Uptake

Rate

𝑓𝑖𝑠 , conv,
𝑋𝜒 , 𝑋𝐺

𝜌𝑥 , 𝜌𝑓

𝑋𝜒
0, 𝑋𝐺

0, 𝜖𝑃 ,

𝑐𝑎𝑐𝑖𝑑 , 𝑇𝑠𝑡𝑒𝑎𝑚,

𝜖𝑆, 𝑡𝑓𝑖𝑛𝑎𝑙
𝑃𝑇

𝜆𝐸 ,

𝑓𝑖𝑠
0,

𝑡𝑓𝑖𝑛𝑎𝑙
𝐸𝐻

𝑣𝑔 , ℎ𝑐 , 𝑑𝑐 ,
𝑑𝑏𝑢𝑏𝑏𝑙𝑒 ,
𝑡𝑓𝑖𝑛𝑎𝑙

𝐵𝑅

Figure 1: An example of the end-to-end process for biochemical conversion of biomass to fuel defined
and automated within VE by connecting different unit models.

Figure 2: Example of ipywidgets element defining the choices of EH unit model and its input parameters.

Figure 3: Example of the user-friendly interface for end-to-end process execution.

The models representing these steps vary from one-dimensional finite element models that
can be carried out on a modern laptop in seconds to three-dimensional computational fluid
dynamics (CFD) simulations that require high-performance computing (HPC) resources and
several hours of CPU time. Maintaining a continuous simulation between different operating
systems and hardware across potentially long wallclock times (often more than 24 hours) is not
well supported with existing workflows. The VE package offers an interface with the SLURM job
scheduler (Yoo et al., 2003) and modifies and launches OpenFOAM jobs (Weller et al., 1998)
to automate the end-to-end bioconversion process. Although this set of functions was necessary
to support the original use case of the bioconversion process, the underlying programming
interface and object-oriented model wrappers were designed to be as model-agnostic as possible.

To enable users to easily set up and launch new simulations, either by swapping in alternate
computational models or specifying a different set of prescribed input parameters, the VE

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

2

https://doi.org/10.21105/joss.08050

package uses Jupyter notebooks (Kluyver et al., 2016) for their ability to deploy both GUI
elements and performant code on different hardware and operating systems. The GUI elements
comprise groups of ipywidgets (Grout et al., 2010) that offer easy methods to solicit and
error-check user-input values (see Figure 2). Additionally, this notebook interface enables users
to specify either a once-through simulation problem (Figure 3) or an iterative optimization in
which the controls and bounds can be easily set via widgets. This combination of features,
along with the unique methods developed to support our specific use cases, distinguishes VE

from other workflow solutions like Airflow1, Luigi2, or Dagster3.

Example of bioconversion optimization
The VE package provides an optimization capability that can be easily accessed through the
user-friendly ipywidgets GUI interface. The notebook supports the selection of multiple
control variables, in which case all chosen variables will be tuned to minimize a given objective
function over a multidimensional design space. Additionally, users can choose to minimize
either the final output or any intermediate output of the process. In the latter case, the number
of unit models in the process is automatically adjusted based on the specified objective; for
example, executing only the first element in a three-element series if the objective function
depends only on element one.

To demonstrate these capabilities of the VE package, we optimize the oxygen uptake rate
(OUR) that determines fuel yields in the bioconversion process (Figure 1), by solving the
box-constrained optimization problem with two controls summarized in Table 1. It is important
to note that the objective function, OUR, is an output of the bioreactor (BR) model, while acid
loading and enzyme loading are independent inputs to the pretreatment (PT) and enzymatic
hydrolysis (EH) models, respectively, which indirectly affect overall fuel yields.

Table 1: Optimization problem with objective and control variables in different unit operations.

Lower bound Upper bound Units
Maximize: OUR (BR output)
By Varying: Acid Loading (PT input) 5 × 10−5 1 × 10−3 mol/mL

Enzyme Loading (EH input) 5 300 mg/g

We solve this optimization problem for two different modeled feedstocks: switchgrass and corn
stover. The key distinction between them is the amount of cellulose (glucan), hemicellulose
(xylan), and lignin present in the initialization of the pretreatment model (Table 2).

Table 2: Feedstock parameters for two optimization cases adopted from (Ragauskas et al., 2014).

Feedstock Xylan (kg/kg) Glucan (kg/kg) Lignin (kg/kg)
Switchgrass 0.325 0.463 0.213
Corn Stover 0.360 0.430 0.209

To accelerate the optimization process, we developed surrogate models for the computationally
expensive unit operations of EH and BR, utilizing Gaussian process regression and leveraging
dimension reduction and active importance sampling. As a result, one can obtain predictions
of EH and BR outputs within seconds.

1airflow.apache.org
2github.com/spotify/luigi
3dagster.io

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

3

https://airflow.apache.org/
https://github.com/spotify/luigi
https://dagster.io/
https://doi.org/10.21105/joss.08050

Figure 4 illustrates the optimization process for these two different feedstocks. The contour plots
of OUR are obtained by sweeping through the parameter space and serve as the background to
visualize the behavior of the objective function. These contour plots verify that our optimization
algorithm follows the gradients as expected and converges to a reasonable final solution.

To demonstrate the robustness of the optimization algorithm, we used different initial values
for the control variables in the switchgrass and corn stover cases. Table 3 displays the initial
and final values of the controls, the objective, and the change in the OUR.

Figure 4: The result of optimizing the amount of acid loading during PT and enzyme loading during EH
to maximize OUR for a modeled switchgrass (top) and corn stover (bottom) feedstock. The triangles
represent the initial control values, the squares indicate the optimized values, and the lines connecting
them show the algorithm’s paths to the maximum.

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

4

https://doi.org/10.21105/joss.08050

Table 3: Optimization results

Feedstock
Initial
Acid

Initial
Enzyme

Initial
OUR

Final
Acid

Final
Enzyme

Final
OUR

OUR
Change

Switchgrass 8 × 10−4 50.00 75.76 5.89×10−5 128.90 77.42 +2.19%
Corn Stover 8 × 10−4 250.00 74.06 6.17×10−5 139.28 76.83 +3.73%

One interesting outcome is the difference in the optimal amount of enzyme loading between
the two feedstocks, where corn stover is optimally processed with an enzyme loading ∼ 8%
greater than that for switchgrass (139.28 vs 128.90 mg/g). Additionally, while a higher acid
loading could improve pretreatment conversion, it is not the optimal for the overall process
because it produces more byproducts that can negatively affect bioreaction. This emphasizes
the value of the VE framework for easily enabling multi-model optimization studies over a wide
variety of user-specified conditions and constraints.

VE usage in the research
The VE package was used to quantify the effects of modifying the enzyme loading and total
enzymatic hydrolysis processing time on the minimum fuel selling price and the optimization
features were used to identify the porosity of the initial feedstock necessary to maximize the
OUR. These results, plus a live demonstration of the VE notebook usage, were presented at the
2021 American Institute of Chemical Engineers (AIChE) Annual Meeting (Young et al., 2021).
A more comprehensive analysis—including details on the surrogate modeling methodology,
model validation against experimental results, and multi-variable optimization outcomes to
maximize OUR—was presented at the 2023 Bioenergy Technologies Office (BETO) peer review
(Young, 2023).

Finally, we reiterate that, while developed for the specific biomass conversion process discussed
above, the VE framework is comprised of generalizable components that can readily extend
to model a wide array of industrial and manufacturing workflows. An immediate example for
future extension is on thermochemical conversion pathways such as biomass/plastics/solid-
waste pyrolysis or gasification that involves similar chemically reacting flows except in a
gas-solid environment. VE framework also provides a pathway to combine biochemical and
thermochemical approaches and identify overall optimal process conditions, in line with current
research directions on hybrid integrated approaches (Begum et al., 2024).

As another example, we may consider the processing of iron ore for steelmaking. This industrial
process generally includes multiple stages of grinding, separation, treatment, and some form
of pelletizing. Each of the processes can be performed in different ways—e.g., grinding may
be performed with bar or ball grinders or using high-pressure grinding rollers that all have
different pros and cons as well as different operational parameters. The VE framework could be
used to study different grinding methods within the context of a broader iron ore processing
operation to optimize different objectives, such as yield, cost, or energy usage. Similar design
process questions can arise in applications such as pharmaceutical production, microelectronics
fabrication, agricultural processing, and more.

Acknowledgements
This work was authored by the National Renewable Energy Laboratory, operated by Alliance for
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-
AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency
and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do
not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

5

https://doi.org/10.21105/joss.08050

retains and the publisher, by accepting the article for publication, acknowledges that the
U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this work, or allow others to do so, for U.S. Government
purposes. A portion of the research was performed using computational resources sponsored
by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located
at the National Renewable Energy Laboratory.

References
Begum, Y. A., Kumari, S., Jain, S. K., & Garg, M. C. (2024). A review on waste biomass-

to-energy: Integrated thermochemical and biochemical conversion for resource recovery.
Environmental Science: Advances. https://doi.org/10.1039/D4VA00109E

Grout, J., Jonathan Frederic, & Corlay, S. (2010). Ipywidgets: Interactive widgets for the
jupyter notebook. In GitHub repository. https://github.com/jupyter-widgets/ipywidgets;
GitHub.

Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof,
B., Worley, M, Sexton, D., & Dungeon, D. (2011). Process design and economics for
biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and
enzymatic hydrolysis of corn stover. National Renewable Energy Lab.(NREL), Golden, CO
(United States). https://doi.org/10.2172/1013269

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J. B., Grout, J., Corlay, S., & others. (2016). Jupyter notebooks-a publishing
format for reproducible computational workflows. Elpub, 2016, 87–90. https://doi.org/10.
3233/978-1-61499-649-1-87

Lischeske, J. J., & Stickel, J. J. (2019). A two-phase substrate model for enzymatic hydrolysis
of lignocellulose: Application to batch and continuous reactors. Biotechnology for Biofuels,
12, 1–15. https://doi.org/10.1186/s13068-019-1633-2

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F.,
Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler,
J. N., Tschaplinski, T. J., Tuskan, G. A., & Wyman, C. E. (2014). Lignin valorization:
Improving lignin processing in the biorefinery. Science, 344(6185), 1246843. https:
//doi.org/10.1126/science.1246843

Rahimi, M. J., Sitaraman, H., Humbird, D., & Stickel, J. J. (2018). Computational fluid
dynamics study of full-scale aerobic bioreactors: Evaluation of gas–liquid mass transfer,
oxygen uptake, and dynamic oxygen distribution. Chemical Engineering Research and
Design, 139. https://doi.org/10.1016/j.cherd.2018.08.033

Sitaraman, H., Danes, N., Lischeske, J. J., Stickel, J. J., & Sprague, M. A. (2019). Coupled CFD
and chemical-kinetics simulations of cellulosic-biomass enzymatic hydrolysis: Mathematical-
model development and validation. Chemical Engineering Science, 206, 348–360. https:
//doi.org/10.1016/j.cej.2015.01.020

Sitaraman, H., Kuhn, E. M., Nag, A., Sprague, M. A., Tucker, M. P., & Stickel, J. J.
(2015). Multiphysics modeling and simulation of high-solids dilute-acid pretreatment
of corn stover in a steam-explosion reactor. Chemical Engineering Journal, 268, 47–59.
https://doi.org/10.1016/j.cej.2015.01.020

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational
continuum mechanics using object-oriented techniques. Computer in Physics, 12(6),
620–631. https://doi.org/10.1063/1.168744

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource
Management. In D. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), Job Scheduling

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

6

https://doi.org/10.1039/D4VA00109E
https://github.com/jupyter-widgets/ipywidgets
https://doi.org/10.2172/1013269
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1186/s13068-019-1633-2
https://doi.org/10.1126/science.1246843
https://doi.org/10.1126/science.1246843
https://doi.org/10.1016/j.cherd.2018.08.033
https://doi.org/10.1016/j.cej.2015.01.020
https://doi.org/10.1016/j.cej.2015.01.020
https://doi.org/10.1016/j.cej.2015.01.020
https://doi.org/10.1063/1.168744
https://doi.org/10.21105/joss.08050

Strategies for Parallel Processing (pp. 44–60). Springer Berlin Heidelberg. https://doi.
org/10.1007/10968987_3

Young, E. (2023). Virtual engineering of low-temperature conversion. Presented at the 2023
U.S. Department of Energy’s Bioenergy Technologies Office (BETO) Project Peer Review.
https://www.nrel.gov/docs/fy23osti/85573.pdf

Young, E., Sitaraman, H., Glaws, A., Bartling, A., Lischeske, J., & Stickel, J. (2021). Keynote:
Virtual engineering software framework for integrated biomass conversion modeling. Pre-
sented at the 2021 American Institute of Chemical Engineers (AIChE) Annual Meeting.
https://www.nrel.gov/docs/fy23osti/81423.pdf

Doronina et al. (2025). Virtual Engineering: Python framework for engineering process design. Journal of Open Source Software, 10(114), 8050.
https://doi.org/10.21105/joss.08050.

7

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://www.nrel.gov/docs/fy23osti/85573.pdf
https://www.nrel.gov/docs/fy23osti/81423.pdf
https://doi.org/10.21105/joss.08050

	Summary
	Statement of need
	Example of bioconversion optimization
	VE usage in the research
	Acknowledgements
	References

