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Summary

The Pore2Chip Python package is designed to create 2D micromodels using extracted data
from 3D X-ray computed tomography (XCT) images. This package helps analyze soil structure
and function, allowing for the investigation of hydro-biogeochemical processes that impact
mineral extraction and reactivity, oxygen concentrations, and nutrient availability in disturbed
or managed soils. Key metrics encompass pore size distributions, pore throat size distributions,
and connectivity (pore coordination numbers). The final output is a 2D scalable SVG design
representing a core or aggregate. Designs can be fabricated with methods such as laser etching,
3D printing, and photolithography.

Statement of need

The resilience of agricultural and natural landscapes is intrinsically connected to soil structure.
Land management (e.g., tillage, grazing, and fire) and associated impacts (e.g., compaction,
pore-clogging) can transform soil microstructure (Feng et al., 2020; Liu et al., 2018; Oliveira
et al., 2022; Rooney et al., 2022; Stoof et al., 2016). These changes in the soil microstructure
determine the flow of water, solutes, and gasses as well as mineral retention, transport, and
distribution (Bailey et al., 2017; Hamamoto et al., 2010; Waring et al., 2020). Simplified,
homogeneous pore networks provide innovative demonstrations of how water, solutes, and
microbes interact (Bhattacharjee et al., 2022) but need more accurate representations of soil
properties. Creating realistic heterogeneous habitats is time-consuming and does not include
pore network characteristics, such as pore connectivity. Incorporating pore dynamics into soil
models such as chemical species degradation enables dynamic predictions for soil responses
under changing pore networks (Davidson et al., 2012; Moyano et al., 2018).

The need for software that can generate various micromodel designs that researchers can test
and validate with minimal computational cost (Dentz et al., 2023; Oostrom et al., 2014)
is increasing. Pore2Chip allows this functionality by providing the intended users, such as
earth scientists and lab-on-chip instrument specialists, with easy-to-use research software for
lab-on-chip designs. Specifically, the Pore2Chip-based information analysis of XCT images
allows researchers to fill this experimental design gap by enabling the ability to build a
representative quasi-2D pore network along with first-order, fast, and reasonably accurate flow
models that can be linked with experiments. These flow models are built using recent advances
in physics-informed neural networks (New et al., 2024), laying the foundation to accelerate
numerical simulations and improve the fidelity of predictions in microscale environments.
Moreover, Pore2Chip allows one to assess the impact of various system parameters, such as
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pore structures, fluid properties, and flow conditions, needed to develop optimal micromodel
experiments. Such a capability can guide model-experiment-data (ModEx) integration at
the microscale, allowing for upscaling microscale processes and predictions of dynamic soil
properties and functions (see Figure 1).

Main features and differences with other tools

Pore2Chip addresses complex pore structures by representing pore networks as connected
shapes, unlike older sphere packing algorithms. This enables users to easily create and control
pore networks representing various real-world conditions. Pore2Chip offers experimental
design capabilities that cannot be achieved by existing software such as epyc (Dobson, 2022).
Pore2Chip provides support and reproducibility for developing lab-on-chip experimental designs
uniformly across different soil datasets with fast, reasonably accurate, first-order flow modeling
capabilities. Microscale experiments using Pore2Chip micromodels may target both abiotic
and biotic processes and be integrated into modeling efforts such as water flow modeling,
reactive transport modeling, and microbial activity simulations.

Implementation details and support libraries

Using Porespy (Gostick et al., 2016), OpenPNM (Gostick et al., 2016) and various graphics
rendering libraries (e.g., drawsvg, ezdxf, svglib, cairosvg, reportlab), Pore2Chip renders SVG or
DXF micromodel designs of the generated network. Output designs are scalable and adjustable
based on the target porosity of the micromodel. It can also be exported as micromodel data in
VTK formats for visualization in Paraview or microfluidic simulations with open-source software
such as PFLOTRAN (https://www.pflotran.org), OpenFOAM (https://www.openfoam.com), and
other physics-informed neural network modules. If the user wants to extract data from
XCT images, Pore2Chip has image filtering and network extraction modules utilizing Otsu
thresholding and PoreSpy. Though, generation function can also work with data extracted by
other software as long as it is an array of values that Python can read.

Figure 2 provides a high-level overview of the repository structure and example use cases
(Figure 1) within the Pore2Chip repository.
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Figure 1: A high-level overview of essential steps in Pore2Chip-based micromodel designs informed by
soil dataset. The iterative ModEx loop continuously improves multi-physics process models by integrating
experimental data, leading to more accurate predictions for fluid flow, reactive-transport, and rhizosphere
function applications.
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Figure 2: An overview of the Pore2Chip repository structure, detailed example notebooks, and built
distributions.
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