
SwiftPol: A Python package for building and
parameterizing in silico polymer systems
Hannah N. Turney 1 and Micaela Matta 1

1 Department of Chemistry, King’s College London Strand Campus, East Wing, 33-41 Surrey St,
London, WC2R 2ND, United Kingdom

DOI: 10.21105/joss.08053

Software
• Review
• Repository
• Archive

Editor: Sarath Menon
Reviewers:

• @jfaraudo
• @ricalessandri
• @hmacdope

Submitted: 28 November 2024
Published: 27 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A polymer sample contains a natural degree of variation in its structure and non-uniformity
between its chains, which influences the bulk material properties of the sample. This innate
heterogeneity is often disregarded in the in silico study of a polymer system, resulting in
divergence from experiments. This paper presents SwiftPol, a user-guided Python software for
the automated generation of polydisperse polymer ensembles which reproduce the heterogeneity
observed in real materials.

Statement of need
MD simulations of polymers are often performed with uniform idealized systems that do not
capture the heterogeneity of their experimental counterparts. The result of this misalignment
is non-convergence between MD-derived polymer properties and experimental data, and these
MD simulations can overlook key components of polymer physics such as polydispersity and
semi-crystallinity (Schmid, 2023; Triandafilidi et al., 2016). Studies have demonstrated that
bulk polymer material properties such as glass transition temperature, hydrophobicity, and
inherent viscosity are highly sensitive to variations in polydispersity, making it essential to
account for this heterogeneity to capture the true physics of polymer systems (Li et al., 2016;
Ochi et al., 2021; Wan et al., 2021). Polymer MD studies showcase an assortment of approaches
to manually incorporate polydispersity into their polymer chain builds (Andrews et al., 2020;
Kawagoe et al., 2019; Stipa et al., 2021). Although effective for their associated applications,
these manual approaches are not universally applicable to different polymer chemistries or are
performed using proprietary software.

Open-source software packages designed to build in silico polymer chains are focused on the
design of polymers at the monomer and single-chain scale (Davel et al., 2024; Klein et al.,
2016; Santana-Bonilla et al., 2023).

Packages that have the capability to build multi-chain systems such as Polyply (Grünewald
et al., 2022), RadonPy (Hayashi et al., 2022), and Polymer Structure Predictor (Sahu et
al., 2022), do not contain in-built functions to incorporate molecular weight diversity, and
put the onus on the user to generate an ensemble of polydisperse chain sequences prior
to using their chain building functions. Polymatic (Abbott et al., 2013), an algorithm to
simulate polymerization, can theoretically create polydisperse systems through its random bond
formation scheme, but does not have to ability to simultaneously control other key attributes of
polymers such as blockiness and monomer ratio. The python tool Hoobas (Girard et al., 2019)
builds polydisperse systems of randomized polymer chains for coarse-grained models. However,
there is not currently a software package available that contains in-built functions to integrate
multiple smaller-scale characteristics (monomer ratio, blockiness, degree of polymerization,
chain terminal) into atomistic computational polymer models, whilst effectively capturing the

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

1

https://orcid.org/0009-0002-3298-0309
https://orcid.org/0000-0002-9852-3154
https://ror.org/0220mzb33
https://doi.org/10.21105/joss.08053
https://github.com/openjournals/joss-reviews/issues/8053
https://github.com/matta-research-group/SwiftPol
https://doi.org/10.5281/zenodo.15667457
http://sarathmenon.me/
https://orcid.org/0000-0002-6776-1213
https://github.com/jfaraudo
https://github.com/ricalessandri
https://github.com/hmacdope
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08053


heterogeneity and polydispersity of real-life samples. The development of SwiftPol was driven
by the need to fill this gap in multi-scale building functionality of existing polymer building
packages, to enable the simulation of realistic polymer models whilst allowing close user control
of multiple system characteristics.

SwiftPol uses open-source Python libraries RDKit (Landrum et al., 2024), OpenFF-interchange
(Thompson et al., 2024), and OpenFF-toolkit (Wagner et al., 2024) to promote reproducibility
and portability. We have ensured that SwiftPol objects can be seamlessly integrated into
existing open-source software built for parameterization and simulation, to allow the user to
select their preferred force field, topology format, and engine. RDKit, OpenFF-interchange and
OpenFF-toolkit enable the export of SwiftPol polymer ensembles directly to simulation engines,
and to a range of MD-compatible file formats, including .pdb, .top, .prmtop, and .json.

Here, we will detail the development of SwiftPol - a user-guided Python tool for building repre-
sentative polymer ensembles, and subsequent studies to show its relevance and performance.

Package Overview
The SwiftPol build module contains Python functions to build both single polymer chains
and polydisperse polymer chain ensembles.

SwiftPol takes as an input the simplified molecular-input line-entry system (SMILES)(Daylight
Chemical Information Systems, Inc., 2022) string of all co-monomers, as well as values
representing the target average properties of the ensemble: monomer % composition (for
copolymers), length, number of chains, blockiness (for blocky copolymers), terminals, residual
monomer. The user must define the reaction SMARTS (Daylight Chemical Information
Systems, 2022) which describes the polymerization reaction associated with their polymer
chemistry.

As depicted in Figure 1, SwiftPol generates an initial polymer chain with a chain length drawn
from a normal distribution centered around the specified target length, along with a terminal
group that corresponds to the chosen input. In the case of a block copolymer, a probability
function is used to determine the ratio of monomers in the chain and the chain is passed to a
second function which tests whether the values for blockiness and % monomer are within 10%
of the input variable by default. The +/- 10% acceptance margin introduces polydispersity into
the ensemble by ensuring a certain level of non-uniformity between polymer chains, without
straying too far from the input value. The acceptance margin can be adjusted by the user to
control build stringency and polydispersity in the SwiftPol ensemble.

If all tests are passed, the chain is appended to the Python polymer ensemble build object,
and the associated properties of the chain are calculated and added as ensemble attributes.
Otherwise, the chain is discarded, and the process is repeated. Once the ensemble size is
satisfied, average properties are calculated using built-in SwiftPol functions.

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

2

https://doi.org/10.21105/joss.08053


Figure 1: Flowchart showing the process of building a polymer ensemble using SwiftPol. Created in
BioRender. Matta, M. (2024) https://BioRender.com/o66z317.

This approach allows for the generation of a polydisperse chain ensemble, meaning each chain
displays different properties but the ensemble matches the target properties and distribution,
as is observed in experimental polymer samples.

SwiftPol also contains functions to generate conformers using RDKit (Landrum et al., 2024) or
OpenEye Omega(license-dependent, academic license provided by OpenEye, Cadence Molecular
Sciences)(Hawkins et al., 2010; OpenEye Cadence Molecular Sciences, 2025), and assign force
field parameters to the polydisperse ensembles using the openff-interchange infrastructure. The
user can export the chain ensemble to existing tools such as packmol (Martínez et al., 2009)
and PolyPly (Grünewald et al., 2022) to generate initial positions for molecular dynamics, the
latter of which is particularly well-suited for building amorphous configurations for amorphous
multi-component systems.

Application: building a poly(lactide-co-glycolide) ensemble
Using SwiftPol, we have successfully constructed polydisperse ensembles of poly(lactide-co-
glycolide) (PLGA), a widely used biodegradable polymer. We used the molecular structures and
properties of experimental PLGA products as input for SwiftPol building functions to create
representative PLGA systems to be used for molecular dynamics simulations. By integrating
experimental data, such as chain terminals, copolymer ratios of lactic and glycolic acid, and
blockiness, we have been able to replicate the bulk characteristics of various commercial polymer
products, namely polydispersity. A full example implementation of SwiftPol for building PLGA

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

3

https://doi.org/10.21105/joss.08053


systems can be found in the building a PLGA system example notebook. We used SwiftPol to
build ‘product X’, a commercially available 75:25 LA:GA ester-terminated PLGA. Following
the chain build, another SwiftPol function was used to calculate the appropriate box size
for the unit cell, number of water molecules, NaCl ions, and residual monomer molecules to
include in the simulation of a complete condensed polymer ensemble. The input values for the
SwiftPol builder, seen in Table 1, were taken from quality assurance documents provided by the
manufacturer of product X, except the value for blockiness which was measured experimentally
by Sun et al (Sun et al., 2022). The system attributes assigned by SwiftPol to the completed
condensed PLGA unit cell are in seen in Table 2.

Table 1: Input parameters for SwiftPol PLGA builder function, for the building of product X.

INPUT VALUE
SYSTEM SIZE 3
TARGET LACTIDE PROPORTION (%) 75
DEGREE OF POLYMERIZATION (MONOMER) 50
TARGET CHAIN BLOCKINESS 1.7
TERMINAL Ester
RESIDUAL MONOMER (% W/W) 0.05
NACL CONCENTRATION (M) 0.1

Table 2: SwiftPol system build attributes. ̄𝑥𝑛 = mean value of attribute across n chains.

ATTRIBUTE ̄𝑥𝑛
SYSTEM SIZE (CHAINS) 3
ACTUAL LACTIDE PROPORTION (%) 68.9
AVERAGE CHAIN BLOCKINESS 1.65
AVERAGE MOLECULE WEIGHT (DALTON) 3370
AVERAGE CHAIN LENGTH (MONOMERS) 50
POLYDISPERSITY INDEX 1.68
BUILD TIME (S) 1.4

Performance Benchmarking
We determined whether SwiftPol can build polymer ensembles and chains with sizes that
are relevant to the system scales of interest by performing a stress test. Figure 2 shows
measurements of the performance benchmarking results, illustrating that SwiftPol can build
large-scale systems in a realistic time frame.

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

4

https://github.com/matta-research-group/SwiftPol/blob/main/Example_Notebooks/PLGA_demo.ipynb
https://doi.org/10.21105/joss.08053


Figure 2: A) Time, t, taken to build systems with a single-chain, ranging from a 10-mer to a 1000-mer.
B) Time, t, taken to 50-mer chain build systems ranging from 10 chains to 250 chains.

Conclusion
We presented SwiftPol, an open-source Python package for building polydisperse in silico
polymer ensembles. SwiftPol recreates core characteristics of bulk polymer materials like
polydispersity, enabling the simulation of representative systems that capture key components
of polymer physics. We have shown that building longer chains and larger systems, exceeding
what would be appropriate for atomistic MD simulations, will not create a time bottleneck
in the MD workflow. SwiftPol is a robust and scalable tool for the guided generation of
polydisperse polymer mixtures, which can be easily integrated into existing open-source MD
software, such as the OpenFF toolkit.

In future releases, we will expand SwiftPol to include options to control tacticity, provide
in-package integration into widely-established packing software and offer a broader selection of
solvation buffers.

Defining Polymer Properties
SwiftPol uses the following expressions to define key polymer properties.

Monomer ratio, Rm, is the ratio of monomer A to monomer B in an AB copolymer, shown in
Equation 1

Rm = 𝑛(𝐴)
𝑛(𝐴 + 𝐵)

(1)

Degree of polymerization, DOP, is the mean polymer chain length in the system, shown in
Equation 2.

𝐷𝑂𝑃 = 𝑥(𝑛𝐴 + 𝑛𝐵) (2)

Number of chains, nchains, is the total number of chains built by SwiftPol and appended to
the object, shown in Equation 3.

𝑛𝑐ℎ𝑎𝑖𝑛𝑠 = total number of chains built (3)

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

5

https://doi.org/10.21105/joss.08053


Blockiness, b, is a measurement of the distribution of monomers in an AB copolymer, shown
in Equation 4.

b = 𝑛𝐵 −𝐵 bonds
𝑛𝐴 −𝐵 bonds

(4)

Residual monomer, Mresid, is the % of residual monomer molecules in the system, shown in
Equation 5.

Mresid = 𝑀𝑤(resid)
𝑀𝑤(carbon-containing compounds)

(5)

User guidance: Dependencies
YAML environment file listing all required packages to use SwiftPol

To use SwiftPol please download the following packages:

• RDKit

• openff-interchange

• openff-toolkit

• openff-nagl

• openeye-toolkits

• openff-units==0.2.2

• dgl==2.0.0

optional dependencies:

• espaloma-charge

for quick dependency and swiftpol install using conda, run the following commands in bash

conda create -n swiftpol python=3.10 rdkit openff-interchange openff-toolkit openff-nagl dgl=2.0.0 openeye-toolkits openff-units=0.2.2 nglview -c conda-forge -c dglteam -c openeye

conda activate swiftpol

git clone https://github.com/matta-research-group/SwiftPol

cd SwiftPol

pip install -e .

Acknowledgements
Hannah Turney is supported by funding contributions from the United Kingdom Research and
Innovation Biotechnology and Biological Sciences Research Council (grant ref. BB/T008709/1)
and Johnson&Johnson Innovative Medicine.

We acknowledge contributions and feedback from Jeffrey Wagner at the Open Force field
consortium and Anusha Lalitha, David Hahn, and Gary Tresadern at Johnson&Johnson
Innovative Medicine.

We acknowledge the use of King’s College London e-research Computational Research, Engi-
neering and Technology Environment (CREATE) high-performance computing facility in the
development and testing of SwiftPol (King’s College London, 2024).

We acknowledge the use of a free academic license provided by OpenEye Scientific, Santa Fe,
NM (Hawkins et al., 2010; OpenEye Cadence Molecular Sciences, 2025).

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

6

https://github.com/matta-research-group/SwiftPol/blob/main/Dev_tools/swiftpol.yml
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://doi.org/10.21105/joss.08053


References
Abbott, L. J., Hart, K. E., & Colina, C. M. (2013). Polymatic: A generalized simulated

polymerization algorithm for amorphous polymers. Theoretical Chemistry Accounts, 132(3),
1334. https://doi.org/10.1007/s00214-013-1334-z

Andrews, J., Handler, R. A., & Blaisten-Barojas, E. (2020). Structure, energetics and
thermodynamics of PLGA condensed phases from Molecular Dynamics. Polymer, 206,
122903. https://doi.org/10.1016/j.polymer.2020.122903

Davel, C. M., Bernat, T., Wagner, J. R., & Shirts, M. R. (2024). Parameterization of General
Organic Polymers within the Open Force Field Framework. Journal of Chemical Information
and Modeling, 64(4), 1390–1305. https://doi.org/10.1021/acs.jcim.3c01691

Daylight Chemical Information Systems, Inc. (2022). Daylight Theory: SMARTS - A
Language for Describing Molecular Patterns. https://daylight.com/dayhtml/doc/theory/
theory.smarts.html

Daylight Chemical Information Systems, Inc. (2022). Daylight Theory: SMILES. https:
//www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Girard, M., Ehlen, A., Shakya, A., Bereau, T., & Cruz, M. O. de la. (2019). Hoobas: A highly
object-oriented builder for molecular dynamics. Computational Materials Science, 167,
25–33. https://doi.org/10.1016/j.commatsci.2019.05.003

Grünewald, F., Alessandri, R., Kroon, P. C., Monticelli, L., Souza, P. C. T., & Marrink, S. J.
(2022). Polyply; a python suite for facilitating simulations of macromolecules and nanoma-
terials. Nature Communications, 13(1), 68. https://doi.org/10.1038/s41467-021-27627-4

Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010).
Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Struc-
tures from the Protein Databank and Cambridge Structural Database. Journal of Chemical
Information and Modeling, 50(4), 572–584. https://doi.org/10.1021/ci100031x

Hayashi, Y., Shiomi, J., Morikawa, J., & Yoshida, R. (2022). RadonPy: Automated physical
property calculation using all-atom classical molecular dynamics simulations for poly-
mer informatics. Npj Computational Materials, 8(1), 1–15. https://doi.org/10.1038/
s41524-022-00906-4

Kawagoe, Y., Surblys, D., Matsubara, H., Kikugawa, G., & Ohara, T. (2019). Construction of
polydisperse polymer model and investigation of heat conduction: A molecular dynamics
study of linear and branched polyethylenimine. Polymer, 180, 121721. https://doi.org/10.
1016/j.polymer.2019.121721

King’s College London. (2024). King’s Computational Research, Engineering and Technology
Environment (CREATE). https://doi.org/10.18742/rnvf-m076

Klein, C., Sallai, J., Jones, T. J., Iacovella, C. R., McCabe, C., & Cummings, P. T. (2016). A
Hierarchical, Component Based Approach to Screening Properties of Soft Matter. In R.
Q. Snurr, C. S. Adjiman, & D. A. Kofke (Eds.), Foundations of Molecular Modeling and
Simulation: Select Papers from FOMMS 2015 (pp. 79–92). Springer. https://doi.org/10.
1007/978-981-10-1128-3_5

Landrum, G., Tosco, P., Kelley, B., Rodriguez, R., Cosgrove, D., Vianello, R., sriniker, Gedeck,
P., Jones, G., NadineSchneider, Kawashima, E., Nealschneider, D., Dalke, A., Swain,
M., Cole, B., Turk, S., Savelev, A., Vaucher, A., Wójcikowski, M., … Bisson, J. (2024).
Rdkit/rdkit: 2024_09_2 (Q3 2024) Release. Zenodo. https://doi.org/10.5281/zenodo.
13990314

Li, S.-J., Xie, S.-J., Li, Y.-C., Qian, H.-J., & Lu, Z.-Y. (2016). Influence of molecular-
weight polydispersity on the glass transition of polymers. Physical Review E, 93. https:

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

7

https://doi.org/10.1007/s00214-013-1334-z
https://doi.org/10.1016/j.polymer.2020.122903
https://doi.org/10.1021/acs.jcim.3c01691
https://daylight.com/dayhtml/doc/theory/theory.smarts.html
https://daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://doi.org/10.1016/j.commatsci.2019.05.003
https://doi.org/10.1038/s41467-021-27627-4
https://doi.org/10.1021/ci100031x
https://doi.org/10.1038/s41524-022-00906-4
https://doi.org/10.1038/s41524-022-00906-4
https://doi.org/10.1016/j.polymer.2019.121721
https://doi.org/10.1016/j.polymer.2019.121721
https://doi.org/10.18742/rnvf-m076
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.5281/zenodo.13990314
https://doi.org/10.5281/zenodo.13990314
https://doi.org/10.1103/PhysRevE.93.012613
https://doi.org/10.1103/PhysRevE.93.012613
https://doi.org/10.21105/joss.08053


//doi.org/10.1103/PhysRevE.93.012613

Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for
building initial configurations for molecular dynamics simulations. Journal of Computational
Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224

Ochi, M., Wan, B., Bao, Q., & Burgess, D. J. (2021). Influence of PLGA molecular weight
distribution on leuprolide release from microspheres. International Journal of Pharmaceutics,
599, 120450. https://doi.org/10.1016/j.ijpharm.2021.120450

OpenEye Cadence Molecular Sciences. (2025). OMEGA 6.0.0.1. OpenEye, Cadence Molecular
Sciences. https://www.eyesopen.com

Sahu, H., Shen, K.-H., Montoya, J. H., Tran, H., & Ramprasad, R. (2022). Polymer Structure
Predictor (PSP): A Python Toolkit for Predicting Atomic-Level Structural Models for
a Range of Polymer Geometries. Journal of Chemical Theory and Computation, 18(4),
2737–2748. https://doi.org/10.1021/acs.jctc.2c00022

Santana-Bonilla, A., López-Ríos de Castro, R., Sun, P., Ziolek, R. M., & Lorenz, C. D. (2023).
Modular Software for Generating and Modeling Diverse Polymer Databases. Journal of
Chemical Information and Modeling, 63(12), 3761–3771. https://doi.org/10.1021/acs.
jcim.3c00081

Schmid, F. (2023). Understanding and Modeling Polymers: The Challenge of Multiple Scales.
ACS Polymers Au, 3(1), 28–58. https://doi.org/10.1021/acspolymersau.2c00049

Stipa, P., Marano, S., Galeazzi, R., Minnelli, C., & Laudadio, E. (2021). Molecular dynamics
simulations of quinine encapsulation into biodegradable nanoparticles: A possible new
strategy against Sars-CoV-2. European Polymer Journal, 158, 110685. https://doi.org/10.
1016/j.eurpolymj.2021.110685

Sun, J., Walker, J., Beck-Broichsitter, M., & Schwendeman, S. P. (2022). Characterization
of commercial PLGAs by NMR spectroscopy. Drug Delivery and Translational Research,
12(3), 720–729. https://doi.org/10.1007/s13346-021-01023-3

Thompson, M., Wagner, J., Gilmer, J. B., Timalsina, U., Quach, C. D., Boothroyd, S., &
Mitchell, J. A. (2024). OpenFF Interchange. Zenodo. https://doi.org/10.5281/zenodo.
11389943

Triandafilidi, V., Rottler, J., & Hatzikiriakos, S. G. (2016). monodMolecular dynamics
simulations of monodisperse/bidisperse polymer melt crystallization. Journal of Polymer
Science Part B: Polymer Physics, 54(22), 2318–2326. https://doi.org/10.1002/polb.24142

Wagner, J., Thompson, M., Mobley, D. L., Chodera, J., Bannan, C., Rizzi, A., trevor-
gokey, Dotson, D. L., Mitchell, J. A., jaimergp, Camila, Behara, P., Bayly, C., JoshHor-
ton, Pulido, I., Wang, L., Lim, V., Sasmal, S., SimonBoothroyd, … Zhao, Y. (2024).
Openforcefield/openff-toolkit: 0.16.0 Minor feature and bugfix release. Zenodo. https:
//doi.org/10.5281/zenodo.10967071

Wan, B., Andhariya, J. V., Bao, Q., Wang, Y., Zou, Y., & Burgess, D. J. (2021). Effect of
polymer source on in vitro drug release from PLGA microspheres. International Journal of
Pharmaceutics, 607, 120907. https://doi.org/10.1016/j.ijpharm.2021.120907

Turney, & Matta. (2025). SwiftPol: A Python package for building and parameterizing in silico polymer systems. Journal of Open Source Software,
10(110), 8053. https://doi.org/10.21105/joss.08053.

8

https://doi.org/10.1103/PhysRevE.93.012613
https://doi.org/10.1103/PhysRevE.93.012613
https://doi.org/10.1103/PhysRevE.93.012613
https://doi.org/10.1002/jcc.21224
https://doi.org/10.1016/j.ijpharm.2021.120450
https://www.eyesopen.com
https://doi.org/10.1021/acs.jctc.2c00022
https://doi.org/10.1021/acs.jcim.3c00081
https://doi.org/10.1021/acs.jcim.3c00081
https://doi.org/10.1021/acspolymersau.2c00049
https://doi.org/10.1016/j.eurpolymj.2021.110685
https://doi.org/10.1016/j.eurpolymj.2021.110685
https://doi.org/10.1007/s13346-021-01023-3
https://doi.org/10.5281/zenodo.11389943
https://doi.org/10.5281/zenodo.11389943
https://doi.org/10.1002/polb.24142
https://doi.org/10.5281/zenodo.10967071
https://doi.org/10.5281/zenodo.10967071
https://doi.org/10.1016/j.ijpharm.2021.120907
https://doi.org/10.21105/joss.08053

	Summary
	Statement of need
	Package Overview
	Application: building a poly(lactide-co-glycolide) ensemble
	Performance Benchmarking
	Conclusion
	Defining Polymer Properties
	User guidance: Dependencies
	Acknowledgements
	References

