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Summary
DeepTrees is a Python package for tree crown segmentation and analysis in remote sensing
imagery. It uses PyTorch for training and predicting on large-scale datasets. Designed for
direct integration with geospatial workflows, DeepTrees provides data loaders, transforms, and
utility functions, enabling efficient experimentation in tree crown segmentation and tree traits
analysis.

Statement of Need
Accurate tree crown segmentation is essential for ecological modeling, biomass estimation,
and forest management (Food & United Nations, 2022). Traditional methods often depend
on labor-intensive manual delineation or specialized scripts. With the rise of high-resolution
imagery from satellites, aircraft, and UAVs, a scalable, open-source tool is needed to:

• Automate the segmentation of tree crowns across diverse landscapes and across sensor
types.

• Seamlessly integrate with geospatial workflows for data loading, tiling, and inference.
• Provide methods for crown morphological and traits analysis.
• Support reproducible research with transparent and customizable training pipelines.
• Go beyond tree crown segmentation and into analysis.

Deep learning has been widely applied to crown detection, especially with CNNs and U-
Net-based models on RGB, multispectral, and lidar data (Freudenberg et al., 2022; Zhao
et al., 2023). Semi-supervised and cross-site learning approaches improve generalization
across environments (Weinstein et al., 2019, 2020). Despite the advancements in detection,
segmentation tools remain limited. Some methods target specific domains, such as orchard
segmentation with RGB-D imagery (Cong et al., 2022) or canopy height maps from laser
scanning (Sun et al., 2022). Yet, in heterogeneous landscapes, challenges persist—overlapping
crowns, diverse canopy structures, and seasonal variation hinder generalization (Moussaid et
al., 2021; Zheng et al., 2024).

Few tools go beyond detection to include structural or ecological analysis. Most focus on
crown detection/segmentation alone, without integrating downstream applications like canopy
height modeling, carbon estimation, or forest structure analysis (Fayad et al., 2024; Pan et
al., 2024; Tolan et al., 2024). This leaves a gap for tools that combine segmentation with
ecological insights, especially for urban forests (Sharma et al., 2024) and large ecosystems.

Library overview
The DeepTrees package offers a comprehensive framework for tree crown segmentation and
analysis, supporting both single-image and batch inference. It generates multiple outputs—tree
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crown masks, outlines, distance transforms, uncertainty (entropy) maps, individual tree rasters,
and crown polygons. These facilitate detailed morphological analysis and integrate seamlessly
with geospatial workflows, aiding ecological monitoring and forest management (Figure 1).

A key feature is model fine-tuning and training. Users can train models from scratch or fine-tune
pre-trained ones on new datasets. We include the original U-Nets from the TreeCrownDe-
lineation project (Freudenberg et al., 2022). Transfer learning helps adapt models to varied
environments and imaging conditions, improving segmentation performance across ecological
and geographic contexts. Custom backbones are supported, allowing integration of new
architectures like Geospatial Foundation Models (GFMs).

Beyond segmentation, DeepTrees computes key tree traits critical for ecological studies and
forest management. Users can derive indices like the Green Chlorophyll Index (GCI), Hue
Index, and Normalized Difference Vegetation Index (NDVI), which assess vegetation health
and chlorophyll content from spectral bands. The module also calculates structural traits
such as the longest spread and cross-spread of tree crowns, providing insights into crown
morphology. These outputs support downstream tasks like biomass estimation and vegetation
health monitoring.

A significant challenge in training deep learning models for remote sensing applications is the
limited availability of annotated data, as tree crown delineation requires domain expertise. To
address this issue, DeepTrees addresses this via an active learning loop that reduces labeling
effort. By quantifying uncertainty at pixel and tile levels during inference, it identifies the most
informative samples for manual annotation—accelerating model performance gains (Wu et al.,
2022).

Built with PyTorch Lightning (Falcon & The PyTorch Lightning team, 2024), DeepTrees
ensures scalability and reproducibility. Its modular architecture supports extensibility and ease
of use, comprising:

• TreeCrownDelineationDataModule: Standardizes data handling for training and infer-
ence.

• TreeCrownDelineationBaseDataset: Handles loading and preprocessing, extended by:
– TreeCrownDelineationDataset: Generates random raster crops for training.
– TreeCrownDelineationInferenceDataset: Provides full raster tiles for inference.

• DeepTreesModel: A LightningModule supporting multiple backbones with training,
validation, and evaluation metrics.

• Trainer: Manages training and inference on CPU or GPU (GPU recommended for
efficiency).

DeepTrees uses Hydra for configuration, accepting YAML config files and arguments that
define module parameters for training and inference scripts.

By unifying segmentation, active learning, and tree crown analysis, DeepTrees offers a robust,
scalable solution for crown delineation and analysis. Its modular, open-source design makes it
ideal for researchers and practitioners using aerial, UAV, or satellite imagery at scale.
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Figure 1: Overview of the DeepTrees workflow for tree crown segmentation and analysis. The system
processes high-resolution RGBi raster tiles (GeoTIFF format) using a data loader, which prepares input
data for training, fine-tuning, or prediction. The model can be trained using polygon annotations (SHP
format) and fine-tuned based on pixel-wise entropy maps (GeoTIFF format) to improve segmentation
quality through active learning. During inference, DeepTrees generates multiple outputs, including tree
masks, crown outlines, distance transform maps, tree crown polygons (exportable as SHP, GeoJSON,
or SQLite), and allometric metrics. The system supports both pre-trained and updated model weights,
enabling flexible and adaptive tree crown delineation.

Pre-trained Models and Datasets
DeepTrees includes pre-trained models from Freudenberg et al. (2022) and our own training
data.

Additionally, the package provides a labelled dataset of tree crowns in the Halle region as
ESRI shapefiles, which can be used for training and evaluation (Taimur Khan, 2025). The tree
crowns are labelled with the following classes:

• 0 = tree

• 1 = cluster of trees

• 2 = unsure

• 3 = dead trees
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License
DeepTrees is distributed under the MIT license.
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