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Summary
Causal mediation analysis is often used to explore the causal pathways linking exposures to
outcomes across various research domains, including epidemiology, public health, and social
sciences. It quantifies the extent to which the causal effect of an exposure on an outcome
is mediated through one or more intermediate variables, known as mediators. The goal of
studies conducting mediation analyses, particularly in health research, is often to understand
how hypothetical interventions targeting mediators might counter exposure effects in order to
guide future treatment and policy decisions as well as intervention development.

The modern causal inference literature initially defined the natural (in)direct effects (Pearl,
2001; Robins & Greenland, 1992) as the estimands of interest in causal mediation analysis.
Grounded in the potential outcomes framework, these effects are defined based on cross-world
counterfactuals (Robins & Richardson, 2011), and their identifiability relies on a cross-world
independence assumption. This assumption, however, can never be guaranteed to hold, not
even with an experiment (Didelez et al., 2006; Robins & Richardson, 2011). Further, this
assumption is not met in the presence of a mediator-outcome confounder that is itself affected
by the exposure (Avin et al., 2005; VanderWeele et al., 2014; Vansteelandt & VanderWeele,
2012), and more generally, in the presence of multiple mediators of interest (VanderWeele &
Vansteelandt, 2014).

Interventional effects (Geneletti, 2007; VanderWeele et al., 2014) have been proposed as
an alternative to address these limitations. In particular, these effects have been shown to
implicitly emulate target trials (Hernán & Robins, 2016) that assess the impact of hypothetical
interventions shifting the distribution of the mediators (Moreno-Betancur & Carlin, 2018).
It has thus been proposed that interventional effects be explicitly defined by mapping to a
hypothetical randomised trial (a target trial) that assesses the hypothetical interventions of
interest (Moreno-Betancur et al., 2021). Specifying the target trial clarifies the causal question
and makes the interventional effects directly policy-relevant and practically meaningful.

Moreno-Betancur et al. (2021) proposed three interventional effects, with each one examining
a distinct policy-relevant question about how hypothetical interventions that would shift
mediator distributions individually, together, or in sequence might impact the outcome. For
example, they examined the extent to which the increased risk of financial hardship in mid-
adulthood (outcome) among adolescent self-harmers (exposed group) could be countered
by a hypothetical intervention that would shift the distribution of weekly cannabis use in
young adulthood (mediator) among adolescent self-harmers to the levels of those who did
not self-harm (unexposed group), either treating other mediators as independent or allowing
for flow-on effects on its causal descendants, such as education and employment. They also
considered an interventional effect capturing the effect of an intervention that shifts the joint
distribution of all mediators (in their example, depression or anxiety, cannabis use in young
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adulthood, education, and employment status) among adolescent self-harmers to the levels in
those who did not self-harm.

The medRCT package provides a user-friendly interface for estimating policy-relevant interven-
tional effects as defined in Moreno-Betancur et al. (2021) using a Monte Carlo simulation-based
g-computation approach. Key features of medRCT include support for multiple mediators,
intermediate confounders (exposure-induced mediator-outcome confounders), and a Shiny
application (Chang et al., 2024) for comprehensive model assessment. Detailed definitions
of the mediation estimands that can be estimated using the medRCT package, as well as the
target trial to which they map, their identifiability and estimation procedures are given in
Moreno-Betancur et al. (2021).

Statement of need
Several R (R Core Team, 2025) software packages are available for causal mediation analysis.
The mediation package (Tingley et al., 2014) implements the estimation of natural effects
using a generic approach based on Monte Carlo integration methods as described by Imai
et al. (2010). The package can also estimate path-specific effects when there are multiple
mediators, and allows researchers to conduct sensitivity analyses to evaluate the robustness of
their results to potential unmeasured confounding. The medflex package (Steen et al., 2017)
implements the methods proposed by Vansteelandt et al. (2012), which directly model the
natural effects based on a class of mean models for nested counterfactuals. The medoutcon

package (Hejazi et al., 2022) implements asymptotically efficient causal machine learning-based
estimators of both the natural and interventional direct and indirect effects (Dıáz et al., 2020).
However, the interventional effects considered are not defined explicitly in terms of a target
trial examining policy-relevant interventions, which may limit their direct practical relevance in
informing decision-making.

The medRCT package addresses these gaps by estimating policy-relevant interventional effects,
explicitly mapped to a target trial. However, as medRCT uses a Monte Carlo simulation-based
g-computation approach, it requires a large number of replications to produce stable and reliable
inference, which can be computationally intensive. Additionally, the approach is sensitive
to model misspecification, as all nuisance parameters can only be estimated via restrictive
parametric modelling. Furthermore, the method is not suited for settings with high-dimensional
mediators or intermediate confounders, where causal machine learning-based estimators are
required (Chen et al., 2025; Dıáz et al., 2020; Liu et al., 2024; Rudolph et al., 2024).

There are several published applications of this methodology in real-world studies, including
Dashti et al. (2022), Goldfeld et al. (2023), and Afshar et al. (2024), demonstrating its utility
across diverse research contexts. For instance, Dashti et al. (2022) studied the mediating roles
of C-reactive protein, leptin, fasting insulin, and estradiol in the effect of adiposity on cancer risk
among postmenopausal women. Goldfeld et al. (2023) assessed the extent to which inequities
could be mitigated by improving disadvantaged children’s parental mental health and preschool
attendance. Before the development of medRCT, these studies had to rely on user-written code,
which is prone to errors and limits both accessibility and reproducibility. Several ongoing studies
at the Murdoch Children’s Research Institute are now using medRCT. For example, one study
aims to investigate the impact on cardiovascular outcomes of a hypothetical intervention that
shifts the distribution of inflammatory markers in adolescents from high-income households to
the levels in those from low-income households, using data from multiple longitudinal cohort
studies.

medRCT has also been used in education and training. It has been used in workshops and
training sessions, such as the ViCBiostat Summer School and workshop at the Society for
Epidemiologic Research 2024 meeting.

The package is extensively documented at its website. Future developments for medRCT include
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extending its functionality to handle survey design weights to broaden its applicability to
real-world studies involving complex survey designs.
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