
KeepDelta: A Python Library for Human-Readable
Data Differencing
Aslan Noorghasemi 1¶ and Christopher McComb 1

1 Department of Mechanical Engineering, Carnegie Mellon University, USA ¶ Corresponding author
DOI: 10.21105/joss.08075

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @tushardave26
• @ujjwalkarn

Submitted: 01 April 2025
Published: 04 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Efficiently managing evolving data is crucial in applications like computational simulations
and sensing, where dynamic data tracking and processing are essential. In simulations, the
traditional method known as full-state encoding stores the entire system state, including all
nested data structures and variable values, at every timestep. While simple to implement, this
approach is highly storage-intensive. On the other hand, recalculating states from scratch
to avoid storage demands is computationally expensive. Similarly, in sensing, continuously
transmitting full data snapshots is inefficient, leading to increased bandwidth consumption
and latency. KeepDelta addresses this challenge by providing a lightweight Python library
that captures and applies only the changes (deltas) between successive states of complex,
nested Python data structures. Designed for clarity and ease of use, KeepDelta produces
human-readable outputs, facilitating debugging and analysis in research applications.

Figure 1: KeepDelta logo

Statement of need
High-frequency data sampling is fundamental in both scientific simulations and real-world
sensing applications, where large volumes of evolving data must be efficiently managed. Both
domains, whether generating synthetic data through computational models or collecting real-
time measurements from physical sensors, face a common challenge: storing, transmitting,
and processing dynamic data without excessive redundancy.

First and foremost, KeepDelta applies to simulation. Simulation is a widely used methodology
across all applied science disciplines, offering a flexible, powerful, and intuitive tool for
designing processes or systems and maximizing their efficiency (Kleijnen, 2018). Specifically,
computational simulations are invaluable tools for studying complex systems and their behaviors
(Aumann, 2007). These studies often take the form of computer experiments, where data
is generated through pseudo-random sampling from known probability distributions. This
approach serves as an invaluable resource for research, particularly in evaluating new methods
and comparing alternative approaches (Morris et al., 2019).

Secondly, KeepDelta also applies to sensing. Sensing technologies are employed across diverse

Noorghasemi, & McComb. (2025). KeepDelta: A Python Library for Human-Readable Data Differencing. Journal of Open Source Software,
10(110), 8075. https://doi.org/10.21105/joss.08075.

1

https://orcid.org/0009-0004-3387-4502
https://orcid.org/0000-0002-5024-7701
https://ror.org/05x2bcf33
https://doi.org/10.21105/joss.08075
https://github.com/openjournals/joss-reviews/issues/8075
https://github.com/aslan-ng/keepdelta
https://doi.org/10.5281/zenodo.15579865
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/tushardave26
https://github.com/ujjwalkarn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08075


scientific and engineering domains, enabling continuous monitoring and analysis of dynamic
environments. It is common for these systems to utilize a set of sensors to capture real-time
data, which is essential for studying systems behaviors, informed decision-making, and system
optimization (Al-Qurabat et al., 2021; Felton et al., 2018).

Both simulations and sensing require mechanisms to track and store evolving states of data
structures over time. In simulations, the naive approach of saving full snapshots at every
timestep leads to excessive storage demands, while recalculating states from scratch is compu-
tationally expensive. Similarly, in sensing applications, continuously storing or transmitting
full data snapshots is impractical, particularly in bandwidth-limited and remote environments.
Instead of relying on these easy-to-implement but inefficient methods, KeepDelta introduces
an optimized middle ground by saving only the deltas (changes) between states, significantly
reducing storage and computation overhead. This Delta Encoding technique has been success-
fully applied in other domains where managing evolving data efficiently is critical, such as web
development (Hoff et al., 2002) and software version management (Percival, 2003).

Figure 2: Comparison of data management approaches in evolving systems. Full-state encoding incurs
high storage and bandwidth costs, while delta encoding saves only changes for efficiency. Rerunning
reduces storage but increases computation and is often impractical for sensing real-world data. The
bottom gradients illustrate trade-offs: storage/bandwidth decrease left to right, while data loading time
increases.

Human-readability is crucial for debugging and development in both simulation and sensing
projects, and KeepDelta is tailored specifically for this purpose. It is lightweight and has no
dependencies, supports native Python data structures, and generates results that are easy to
interpret. This makes it an ideal tool for Python developers and researchers seeking a simple
yet powerful solution for change management. By providing clear, human-readable output,
KeepDelta enhances both the development process and debugging efficiency, making it easier
to track and manage changes in complex projects involving both computational models and
real-world sensing systems.

Noorghasemi, & McComb. (2025). KeepDelta: A Python Library for Human-Readable Data Differencing. Journal of Open Source Software,
10(110), 8075. https://doi.org/10.21105/joss.08075.

2

https://doi.org/10.21105/joss.08075


Figure 3: An example of human-readable change tracking with KeepDelta. (a) Previous smart-home
state. (b) State after updates to temperature, lights, door lock, schedule, and alerts. (c) Delta produced
by KeepDelta, which records only the changes including numeric adjustments, boolean toggles, a tuple
insertion, and a new set element, offering a concise, easily interpretable summary.

Comparison to Existing Tools
In the landscape of Python libraries designed for delta encoding, several notable tools have
emerged, each with distinct features and applications.

xdelta3 (Colvin, 2017) and its predecessor, xdelta (MacDonald, 2016), are tools that perform
delta encoding at the binary level. These utilities are particularly effective for binary file
differencing and are widely used in version control systems and data synchronization tasks.
However, both are considered outdated and are no longer actively maintained. Their operation
at the binary level results in outputs that are not human-readable, and they are not tailored
for Python data structures, limiting their applicability in Python-centric workflows.

detools (Moqvist, 2023) is a Python package that focuses on applying and generating binary
patches using a custom delta algorithm optimized for embedded systems. While it is efficient
and actively maintained, detools operates strictly at the binary level, producing outputs that
are not human-readable and lacking support for native Python data structures. As such, it is
more suitable for firmware and embedded development than for Python-centric simulation or
data analysis workflows.

difflib is part of the Python Standard Library and requires no external dependencies. It
provides unified- and context‑style text diffs for strings and lists, making it readily available
but limited to sequence comparison rather than structured data differencing. It does not
expose a programmatic delta object, so you cannot save its diff output as a delta for later
state reconstruction.

DataDiff (Brondsema & R. Coombs, 2023) offers human-readable, unified-diff style compar-
isons of Python objects, including nested dictionaries, sequences, sets, and multi-line strings,
and integrates with testing frameworks via nose-assert. Similar to difflib, it produces text-
based diffs, but unlike difflib, it handles arbitrary Python objects rather than only strings
or lists. However, like difflib, DataDiff only generates one-off diffs and does not expose a
programmatic delta object for incremental change tracking or later state reconstruction.

DeepDiff (Dehpour, 2025) is a contemporary library that facilitates the identification of

Noorghasemi, & McComb. (2025). KeepDelta: A Python Library for Human-Readable Data Differencing. Journal of Open Source Software,
10(110), 8075. https://doi.org/10.21105/joss.08075.

3

https://doi.org/10.21105/joss.08075


differences between complex Python data structures, including dictionaries, lists, and sets. It
extends support to external libraries like NumPy (Harris et al., 2020), enhancing its versatility.
DeepDiff also offers a range of configuration options, such as ignoring iterable order, controlling
significant‐digit precision in numeric comparisons, and custom comparator functions which
make it highly flexible but add complexity and dependencies. Moreover, this extensibility
can lead to outputs that are less human-readable compared to KeepDelta, and the added
dependencies may not be necessary for all projects.

In contrast to these alternatives, KeepDelta is a lightweight Python library tailored for simula-
tions and sensing, focusing on efficient delta management for built-in Python data structures.
It produces human-readable outputs that facilitate debugging and research workflows. Written
entirely in Python and free of external dependencies, KeepDelta integrates seamlessly into
Python-centric workflows, including simulation, sensing, and data analysis pipelines.

References
Al-Qurabat, A. K. M., Mohammed, Z. A., & Hussein, Z. J. (2021). Data traffic management

based on compression and MDL techniques for smart agriculture in IoT. Wirel. Pers.
Commun., 120(3), 2227–2258. https://doi.org/10.1007/s11277-021-08563-4

Aumann, C. A. (2007). A methodology for developing simulation models of complex systems.
Ecological Modelling, 202(3), 385–396. https://doi.org/10.1016/j.ecolmodel.2006.11.005

Brondsema, D., & R. Coombs, J. (2023). DataDiff (Version 2.2.0). https://pypi.org/project/
datadiff/

Colvin, S. (2017). xdelta3. In GitHub repository (Version 0.0.5). GitHub. https://github.
com/samuelcolvin/xdelta3-python

Dehpour, S. (2025). DeepDiff. In GitHub repository (Version 8.4.2). GitHub. https:
//github.com/seperman/deepdiff

Felton, C. L., Gilbert, B. K., & Haider, C. R. (2018). Data compression via low complexity delta
transition lossless encoding for remote physiological and environmental monitoring. 2018
40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 4379–4384. https://doi.org/10.1109/EMBC.2018.8513277

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hoff, A. van, Douglis, F., Krishnamurthy, B., Goland, Y. Y., Hellerstein, D. M., Feldmann,
A., & Mogul, J. (2002). Delta encoding in HTTP (No. 3229). RFC 3229; RFC Editor.
https://doi.org/10.17487/RFC3229

Kleijnen, J. P. C. (2018). Design and analysis of simulation experiments. In J. Pilz, D. Rasch, V.
B. Melas, & K. Moder (Eds.), Statistics and simulation (pp. 3–22). Springer International
Publishing. ISBN: 978-3-319-76035-3

MacDonald, J. (2016). xdelta. In GitHub repository (Version 3.1.0). GitHub. https:
//github.com/jmacd/xdelta

Moqvist, E. (2023). detools. In GitHub repository (Version 0.53.0). GitHub. https://github.
com/eerimoq/detools

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate
statistical methods. Statistics in Medicine, 38(11), 2074–2102. https://doi.org/10.1002/
sim.8086

Noorghasemi, & McComb. (2025). KeepDelta: A Python Library for Human-Readable Data Differencing. Journal of Open Source Software,
10(110), 8075. https://doi.org/10.21105/joss.08075.

4

https://doi.org/10.1007/s11277-021-08563-4
https://doi.org/10.1016/j.ecolmodel.2006.11.005
https://pypi.org/project/datadiff/
https://pypi.org/project/datadiff/
https://github.com/samuelcolvin/xdelta3-python
https://github.com/samuelcolvin/xdelta3-python
https://github.com/seperman/deepdiff
https://github.com/seperman/deepdiff
https://doi.org/10.1109/EMBC.2018.8513277
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.17487/RFC3229
https://github.com/jmacd/xdelta
https://github.com/jmacd/xdelta
https://github.com/eerimoq/detools
https://github.com/eerimoq/detools
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086
https://doi.org/10.21105/joss.08075


Percival, C. (2003). Naive differences of executable code. https://www.daemonology.net/
bsdiff/

Noorghasemi, & McComb. (2025). KeepDelta: A Python Library for Human-Readable Data Differencing. Journal of Open Source Software,
10(110), 8075. https://doi.org/10.21105/joss.08075.

5

https://www.daemonology.net/bsdiff/
https://www.daemonology.net/bsdiff/
https://doi.org/10.21105/joss.08075

	Summary
	Statement of need
	Comparison to Existing Tools
	References

