
CaNS-Fizzy: A GPU-accelerated finite difference
solver for turbulent two-phase flows
Giandomenico Lupo 1*¶, Peter Wellens 2, and Pedro Costa 1*

1 Delft University of Technology, Department of Process & Energy, Delft, The Netherlands 2 Delft
University of Technology, Department of Marine & Transport Technology, Delft, The Netherlands ¶
Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.08076

Software
• Review
• Repository
• Archive

Editor: Pi-Yueh Chuang
Reviewers:

• @akashdhruv
• @archermarx

Submitted: 18 February 2025
Published: 19 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
CaNS-Fizzy – Fizzy for short – is a GPU-accelerated numerical solver for massively-parallel
Direct Numerical Simulations (DNS) of incompressible two-phase flows. A DNS enables
direct access to all flow quantities, resolved in time and space at all relevant continuum
scales. The resulting numerical experiments provide complete data sets for the analysis of
the detailed mechanisms underlying the flow, particularly the interaction between the chaotic
and multi-scale dynamics of turbulence and the interface movement and deformation. The
insights gained can guide the design and operation of various applications, such as boiling
heat transfer, liquid-liquid extraction, gas-liquid reactors, absorption and stripping columns,
distillation columns, liquid combustion appliances, in all of which the rate of heat and mass
transfer between phases is proportional to the interfacial area. Fizzy’s two-phase capabilities
were implemented using the efficient, GPU-accelerated Navier-Stokes solver CaNS (Costa,
2018) as a base.

Statement of need
Fizzy is suited for large-scale direct numerical simulations of canonical incompressible two-phase
flows, from simple laminar cases to bubble/droplet-laden turbulent suspensions. These flows
may be computationally expensive due to the stringent resolution requirements imposed by the
direct solution of immersed interfaces dispersed throughout the domain. This demands efficient
use of the capabilities of modern computing systems; Fizzy has been developed to include key
desirable features that enable this objective: a one-fluid formulation of the two-phase flow
governing equations, the use of a fast direct solver for the pressure Poisson equation, and
an efficient distributed GPU porting with an interface capturing strategy that is suitable for
GPU acceleration. In addition to the momentum transfer and interface capturing, the code
has the capability to solve heat transfer in both fluid phases, and thermal convection based
on the Oberbeck-Boussinesq approximation. Finally, the code has been extensively validated
with several benchmark cases that demonstrate the different features of the solver, which are
incorporated in the continuous integration workflows of the repository. The GPU capabilities
differentiate Fizzy from other commonly used open-source state-of-the-art incompressible
two-phase flow solvers such as boilingFoam (Municchi et al., 2024) and Basilisk (Popinet,
2009, 2015), which are more suited to smaller-scale direct numerical simulations in complex
geometries. The recently published FLOW36 (Roccon et al., 2025) is another GPU-ready code
with similar features to Fizzy, differing in the interface capturing scheme and in the use of a
pseudo-spectral instead of a finite difference approach.

Lupo et al. (2025). CaNS-Fizzy: A GPU-accelerated finite difference solver for turbulent two-phase flows. Journal of Open Source Software,
10(112), 8076. https://doi.org/10.21105/joss.08076.

1

https://orcid.org/0000-0002-1095-118X
https://orcid.org/0000-0003-0009-9058
https://orcid.org/0000-0001-7010-1040
https://doi.org/10.21105/joss.08076
https://github.com/openjournals/joss-reviews/issues/8076
https://github.com/CaNS-World/CaNS-Fizzy
https://doi.org/10.5281/zenodo.16838957
https://www.anl.gov/profile/piyueh-chuang
https://orcid.org/0000-0001-6330-2709
https://github.com/akashdhruv
https://github.com/archermarx
https://creativecommons.org/licenses/by/4.0/
https://github.com/fmuni/boilingFoam-PUBLIC
http://basilisk.fr/
https://github.com/MultiphaseFlowLab/FLOW36
https://doi.org/10.21105/joss.08076


Mathematical model
A one-fluid formulation of the two-phase flow is employed, solving a single set of governing
equations for both phases in the whole domain. The incompressible Navier-Stokes equation,
the heat transport equation and the phase indicator transport equation are evolved in time to
compute the velocity and pressure, temperature and phase indicator fields respectively. The
latter identifies the regions of the domain occupied by either phase: it is continuous and smooth
over the whole domain, and the interface between phases is diffuse. The thermophysical and
transport properties (density, viscosity, thermal conductivity, specific heat capacity) are linearly
mapped over the phase indicator field, and thus also continuous and smooth. The surface
tension at the interface is included as a Continuous Surface Force (CSF) (Brackbill et al.,
1992) in the Navier-Stokes equation.

Methods and Implementation strategy
The governing equations are spatially discretized with a second-order finite difference scheme on
a 3D Cartesian grid; a staggered grid arrangement is used for the velocity field, while all other
quantities are stored at the cell centers; time integration is based on a low-storage three-step
Runge-Kutta scheme. The incompressible Navier-Stokes equation is solved with a pressure
correction scheme to enforce mass conservation, which yields a variable coefficient Poisson
equation for the pressure correction: a splitting technique adapted from (Dong & Shen, 2012)
and (Dodd & Ferrante, 2014) transforms this equation into a constant coefficient Poisson
equation (Frantzis & Grigoriadis, 2019), enabling the use of the fast direct FFT solver of the
CaNS code. Fizzy also allows for solving the conventional variable-coefficients problem using a
geometric multigrid method through the Hypre library. The interface capturing scheme for the
phase indicator transport equation can be chosen between the Accurate Conservative Diffuse
Interface (ACDI) scheme (Jain, 2022) and a tailored flavour of the THINC algebraic Volume-of-
Fluid method (Xie & Xiao, 2017). Both methods share a diffuse interface representation of the
phase interface that allows for continuous and smooth mapping of the physical fields across the
interface. The ACDI method requires no explicit interface reconstruction thanks to an interface
regularization flux; for the VoF method the interface geometry in each cell is simplified to allow
analytic calculation of the interface-cell intersection and of the advection fluxes at cell faces:
thus in both methods the computational load is kept constant regardless of the local interface
topology, making the algorithm particularly suited for parallelization on GPU architecture.
For the ACDI method, the momentum equation includes the flux associated with the diffuse
interface regularization, which allows for a mass–momentum consistent discretization and
enables stability at high density contrasts between phases. The heat equation similarly includes
the enthalpy flux associated with the interface regularization.

The code is written in modern Fortran, and is parallelized using MPI and OpenACC directives
for GPU kernel offloading and host/device data transfer. As in CaNS, Fizzy leverages cuDecomp
(Romero et al., 2022) for distributed memory calculations in pencil domain decompositions,
and cuFFT for computing Fourier transforms. These libraries are designed to work on NVIDIA
GPUs; in the future Fizzy will support other GPU hardware, following updates on CaNS. On
CPUs, the code uses 2DECOMP&FFT (Rolfo et al., 2023) and FFTW to perform the same
operations.

Users can design and run a simulation by specifying the physical and computational parameters
in a simple Fortran namelist input file. The code uses a modular, procedural design which
makes extensions with different numerical methods or physical phenomena easy to develop. In
the short term, we aim to allow for alternative schemes for spatial and temporal discretization,
and introduce different interface capturing schemes, e.g. geometric VoF.

Finally, the code was designed so that important new computational features in the parent
solver CaNS (e.g. porting efforts to other architectures) are easily propagated to Fizzy.

Lupo et al. (2025). CaNS-Fizzy: A GPU-accelerated finite difference solver for turbulent two-phase flows. Journal of Open Source Software,
10(112), 8076. https://doi.org/10.21105/joss.08076.

2

https://github.com/hypre-space/hypre
https://github.com/NVIDIA/cuDecomp
https://docs.nvidia.com/cuda/cufft/
https://github.com/2decomp-fft/2decomp-fft
https://www.fftw.org/
https://doi.org/10.21105/joss.08076


Examples
Figure 1 illustrates examples of two-phase flows simulated with this solver. The left panel
shows how forced homogeneous isotropic turbulence breaks and deforms the interface of a
liquid-liquid emulsion in a triperiodic domain; the right panel shows a hot gas bubble rising in
a cold liquid, attaining the typical skirt shape while cooling down and simultaneously heating
up the surrounding liquid in its wake.

Figure 1: (Left) Simulation of a liquid-liquid emulsion in a three-periodic domain with sustained
homogeneous isotropic turbulence. The colour represents the velocity magnitude. A diagonal plane with
in-plane velocity vectors is shown. (Right) Three successive snapshots of a hot gas bubble rising in a
cold liquid. A coloured volume rendering of the temperature field is shown both in the gas bubble and in
the liquid wake.

Computational performance
Fizzy is tailored for large-scale simulations that exploit the computational capacity of modern
GPU clusters with full GPU occupancy. The most relevant metric of the parallel efficiency
for such scenario is a weak scaling test that determines the penalty in increased wall-clock
time occurring when the problem size is increased alongside the computational resources. The
liquid-liquid emulsion in homogeneous isotropic turbulence case of Figure 1 (Left) has been
used for this test: the size of the computational domain has been extended in one direction
linearly with the number of GPU nodes employed. The test has been carried out on the
GPU partition of the supercomputer Leonardo from Cineca, Italy; each computing node is
equipped with four NVIDIA A100 SXM6 64GB GPUs, and is able to fit at full memory a 10243
(∼ 1 billion grid cells) computational box. Figure 2 shows the performance penalty for the
ACDI method, as the problem domain size (i.e. the number of spatial degrees of freedom) is
increased from occupying 4 nodes (16 GPUs) to 64 nodes (256 GPUs): the 16 times larger
computation takes only about 1.7 times longer than the original 4-node computation. A similar
performance is obtained using the algebraic VoF method. The key contributor to the parallel
performance is the interface capturing approach which prevents thread divergence in GPU
kernels, as the computational load is independent of the local interface morphology. Indeed,
very little sensitivity of the wall-clock time per iteration to the amount of interface area is
observed, even for unsteady evolution of the interface with drastic topology changes during
break-up events.

Lupo et al. (2025). CaNS-Fizzy: A GPU-accelerated finite difference solver for turbulent two-phase flows. Journal of Open Source Software,
10(112), 8076. https://doi.org/10.21105/joss.08076.

3

https://doi.org/10.21105/joss.08076


Figure 2: Weak scaling performance on GPU nodes at full memory. The vertical axis shows the wall-clock
time normalized by the four-node case.

Acknowledgements

We would like to thank Jordi Poblador-Ibanez, Suhas Jain, Naoki Hori, and Bergmann Óli Aðal-
steinsson for insightful discussions that led to practical improvements of the numerical method.
This work was partially supported by a Cohesion Grant from the Mechanical Engineering
Faculty at TU Delft awarded to Pedro Costa and Peter Wellens.

References
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling

surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.
1016/0021-9991(92)90240-Y

Costa, P. (2018). A FFT-based finite-difference solver for massively-parallel direct numerical
simulations of turbulent flows. Computers & Mathematics with Applications, 76(8),
1853–1862. https://doi.org/10.1016/j.camwa.2018.07.034

Dodd, M. S., & Ferrante, A. (2014). A fast pressure-correction method for incompressible
two-fluid flows. Journal of Computational Physics, 273, 416–434. https://doi.org/10.
1016/j.jcp.2014.05.024

Dong, S., & Shen, J. (2012). A time-stepping scheme involving constant coefficient matrices for
phase-field simulations of two-phase incompressible flows with large density ratios. Journal
of Computational Physics, 231(17), 5788–5804. https://doi.org/10.1016/j.jcp.2012.04.041

Frantzis, C., & Grigoriadis, D. G. E. (2019). An efficient method for two-fluid incompressible
flows appropriate for the immersed boundary method. Journal of Computational Physics,
376, 28–53. https://doi.org/10.1016/j.jcp.2018.09.035

Jain, S. S. (2022). Accurate conservative phase-field method for simulation of two-phase flows.
Journal of Computational Physics, 469, 111529. https://doi.org/10.1016/j.jcp.2022.111529

Municchi, F., Markides, C. N., Matar, O. K., & Magnini, M. (2024). Computational study
of bubble, thin-film dynamics and heat transfer during flow boiling in non-circular mi-
crochannels. Applied Thermal Engineering, 238, 122039. https://doi.org/10.1016/j.
applthermaleng.2023.122039

Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows.

Lupo et al. (2025). CaNS-Fizzy: A GPU-accelerated finite difference solver for turbulent two-phase flows. Journal of Open Source Software,
10(112), 8076. https://doi.org/10.21105/joss.08076.

4

https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.1016/j.camwa.2018.07.034
https://doi.org/10.1016/j.jcp.2014.05.024
https://doi.org/10.1016/j.jcp.2014.05.024
https://doi.org/10.1016/j.jcp.2012.04.041
https://doi.org/10.1016/j.jcp.2018.09.035
https://doi.org/10.1016/j.jcp.2022.111529
https://doi.org/10.1016/j.applthermaleng.2023.122039
https://doi.org/10.1016/j.applthermaleng.2023.122039
https://doi.org/10.21105/joss.08076


Journal of Computational Physics, 228(16), 5838–5866. https://doi.org/10.1016/j.jcp.
2009.04.042

Popinet, S. (2015). A quadtree-adaptive multigrid solver for the serre–green–naghdi equations.
Journal of Computational Physics, 302, 336–358. https://doi.org/10.1016/j.jcp.2015.09.
009

Roccon, A., Soligo, G., & Soldati, A. (2025). FLOW36: A spectral solver for phase-field based
multiphase turbulence simulations on heterogeneous computing architectures. Computer
Physics Communications, 313, 109640. https://doi.org/10.1016/j.cpc.2025.109640

Rolfo, S., Flageul, C., Bartholomew, P., Spiga, F., & Laizet, S. (2023). The 2DECOMP&FFT
library: An update with new CPU/GPU capabilities. Journal of Open Source Software,
8(91), 5813. https://doi.org/10.21105/joss.05813

Romero, J., Costa, P., & Fatica, M. (2022). Distributed-memory simulations of turbulent
flows on modern GPU systems using an adaptive pencil decomposition library. Proceedings
of the Platform for Advanced Scientific Computing Conference. https://doi.org/10.1145/
3539781.3539797

Xie, B., & Xiao, F. (2017). Toward efficient and accurate interface capturing on arbitrary
hybrid unstructured grids: The THINC method with quadratic surface representation and
gaussian quadrature. Journal of Computational Physics, 349, 415–440. https://doi.org/10.
1016/j.jcp.2017.08.028

Lupo et al. (2025). CaNS-Fizzy: A GPU-accelerated finite difference solver for turbulent two-phase flows. Journal of Open Source Software,
10(112), 8076. https://doi.org/10.21105/joss.08076.

5

https://doi.org/10.1016/j.jcp.2009.04.042
https://doi.org/10.1016/j.jcp.2009.04.042
https://doi.org/10.1016/j.jcp.2015.09.009
https://doi.org/10.1016/j.jcp.2015.09.009
https://doi.org/10.1016/j.cpc.2025.109640
https://doi.org/10.21105/joss.05813
https://doi.org/10.1145/3539781.3539797
https://doi.org/10.1145/3539781.3539797
https://doi.org/10.1016/j.jcp.2017.08.028
https://doi.org/10.1016/j.jcp.2017.08.028
https://doi.org/10.21105/joss.08076

	Summary
	Statement of need
	Mathematical model
	Methods and Implementation strategy
	Examples
	Computational performance
	Acknowledgements
	References

