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Summary

State-space models (SSMs) are powerful tools for modeling time series data that naturally arise
in a variety of domains, including neuroscience, finance, and engineering. The unifying principle
of these models is they assume an observation sequence, Y],Y5, ..., Y, is generated through
an underlying Markovian latent sequence, X;, X5, ..., X7. This framework encompasses two
popular models for time series analysis: the hidden Markov model (HMM) and the (Gaussian)
linear dynamical system (LDS, i.e., the Kalman filter). Thus, SSMs provide a probabilistic
framework for describing the temporal evolution of many phenomena, and their generality
naturally leads to a variety of use cases. We introduce StateSpaceDynamics.jl (Senne et al.,
2025), an open-source, modular package designed to be fast, readable, and self-contained for
the purpose of easily fitting a plurality of SSMs in the Julia language.

Statement of need

Advances in neuroscience have enabled the collection of massive, multivariate, and complex
time-series datasets, where simultaneous observations from hundreds to thousands of neurons
are increasingly common. Interpreting these high-dimensional datasets presents significant
challenges. Recent modeling approaches suggest that neural activity can be characterized by
a set of latent factors evolving within a low-dimensional manifold. Consequently, there is a
growing need for models that combine dimensionality reduction with temporal dynamics, for
which state-space models provide a natural framework.

While state-space model implementations exist in Python, such as the ssm package (S.
Linderman, 2022) and Dynamax (Scott W. Linderman et al., 2025), the Julia programming
language lacks an equivalent that meets the needs of modern neuroscience. Existing Julia
offerings, like StateSpaceModels.j1 (Saavedra et al., 2019), can accommodate continuous-
state SSMs (e.g., LDS) but are limited to Gaussian observation models and rely on analytical
calculation of the marginal log-likelihood. This latter limitation precludes model inference and
parameter learning for non-conjugate observations which are common in neuroscience, where
neural activity follow Poisson or other discrete distributions. Packages for performing inference
and learning using sampling-based methods exist in Julia (such as Turing.jl (Fjelde et al.,
2025; Ge et al., 2018)) but are computationally inefficient compared to tailored approaches
based on Expectation-Maximization (EM). For discrete SSMs, an existing Julia offering,
HiddenMarkovModels.j1 (Dalle, 2024), is efficient and scalable but not intentionally designed
with the functionality for mixing models that contain both discrete and continuous latent
variables, such as the switching linear dynamical system model (SLDS) (Ghahramani & Hinton,
2000; Scott W. Linderman et al., 2016) increasingly used in neuroscience. Although our
primary motivation arises from challenges in modeling high-dimensional neural population
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activity, the package is not specific to neuroscience. The algorithms and abstractions apply
equally well to time-series problems in engineering, econometrics, and other fields where latent
variable models and structured inference are required.

Package design

To address these limitations, we developed StateSpaceDynamics. j1, which provides a flexible
framework for fitting a variety of SSMs—including non-Gaussian observation models and models
that mix discrete and continuous latents—while maintaining computational efficiency.

For continuous latent-variable models, (e.g., LDS) StateSpaceDynamics.jl employs a previ-
ously advocated approach of directly maximizing the complete-data log-likelihood with respect
to the hidden state path (Paninski et al., 2010). By leveraging the block tridiagonal structure
of the Hessian matrix, this method allows for the exact computation of the Kalman smoother
in O(T) time (Paninski et al., 2010). Furthermore, it facilitates the generalization of the
Rauch—Tung-Striebel (RTS) smoother to accommodate other observation models (e.g., Poisson
and Bernoulli), requiring only the computation of the gradient and Hessian of the new model
to obtain an exact maximum a posteriori (MAP) path (Macke et al., 2011).

Using analytically computable Hessians, StateSpaceDynamics. j1 performs approximate EM for
non-Gaussian models via Laplace approximation of the latent posterior. Speed is maintained by
using fast inversion algorithms of the negative Hessian (i.e., Fisher Information Matrix), which
are block tridiagonal (Rybicki & Hummer, 1990). From here StateSpaceDynamics. j1 computes
the approximate second moments of the posterior i.e., Cov(X,, X;) and Cov(X,, X, ), and
uses the analytical updates of the canonical LDS (Bishop, 2006; Paninski et al., 2010). It is
important to note that when the observations and state-evolution process are assumed to have
Gaussian errors, this approach is exactly the same as using the standard Kalman Filter and
RTS-Smoother, i.e., they will give the same results.

Lastly, StateSpaceDynamics. j1 provides implementations of discrete state-space models i.e.,
hidden Markov models, and the ability to fit these models using EM. While this is not the
primary development target of the package, these models are necessary for the development
of hierarchical models that mix discrete and continuous latents, e.g., the switching LDS
(SLDS) and the recurrent switching LDS (rSLDS) (Ghahramani & Hinton, 2000; Scott W.
Linderman et al., 2016; Murphy, 1998) which have become immensely popular in neuroscience
and require similarly tailored computational routines for efficient inference and learning. To
illustrate the functionality of StateSpaceDynamics.jl for this model class, we include an
implementation of Variational Laplace EM (vLEM) (Zoltowski et al., 2020). The development
of HiddenMarkovModels. j1, may make our approach to discrete model learning redundant,
and future work may entail directly interfacing with this package (Dalle, 2024). Nonetheless,
we provide a suite of HMM models popular in neuroscience including the classic Gaussian
HMM and a variety of input-output HMMs (Bengio & Frasconi, 1994), commonly referred to
as generalized linear model-HMMs (GLM-HMMs) (Ashwood et al., 2022) in neuroscience.

By providing these features, StateSpaceDynamics. jl fills a critical gap in the Julia ecosystem,
offering modern computational neuroscientists the tools to model complex neural data with
state-space models that incorporate both dimensionality reduction and temporal dynamics.

Benchmarks

To evaluate the performance of StateSpaceDynamics.jl, we conducted two benchmarking
studies focusing on fitting a Gaussian LDS and a Gaussian HMM. For the Gaussian LDS
benchmark, we compared our package against two alternatives: the NumPy-based Kalman
filter-smoother package pykalman and the more recent JAX-based Dynamax. We intentionally
excluded StateSpaceModels. j1 from our comparison as its scope is geared towards structured
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time-series models. Dynamax was properly JIT-compiled using the jax.jit function prior to
benchmarking to ensure fair comparison.

For our Gaussian LDS experiments, we constructed a synthetic dataset as follows. The state
transition matrix A was generated as a random n-dimensional rotation matrix, while the
observation matrix C' was created as a random m X n matrix. Both the state noise covariance
() and observation noise covariance R were set to identity matrices. To ensure a fair comparison,
all packages were initialized using identical random parameters, after which we executed the
EM algorithm for 100 iterations. We conducted these benchmarks using PythonCall. jl
(Doris, 2021) and BenchmarkTools.jl (Chen & Revels, 2016), with the assumption that
Julia-to-Python overhead is negligible for these computationally intensive operations.

To thoroughly assess performance across different scales, we tested three sequence lengths
(T = 100,500,1000) and explored multiple dimensionality settings, with state dimensions
n = 2,4,6, 8 and observation dimensions m = 2,4, 6, 8. In all cases, we restricted evaluations
to settings where the latent dimension was less than or equal to the observation dimension.
Finally, it is worth noting that Dynamax includes a temporally parallel smoother with O(logT')
complexity. We did not include this method in our comparisons because it is GPU-specific
and incompatible with our direct optimization approach, which is designed for inference in
non-conjugate models.
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For the second benchmarking study, we compared StateSpaceDynamics. j1, HiddenMarkovModels. j1,
and Dynamax in their ability to fit a Gaussian HMM. Once again, we ensured that Dynamax

was JIT-compiled for a fair comparison. To construct synthetic datasets, we sampled from a
Gaussian HMM with randomly selected emission models, transition matrices, and initial state
distributions. Each package was initialized using identical random parameters to maintain
consistency. EM was run for 100 iterations.
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In our benchmarking, we find that for the LDS, both StateSpaceDynamics.j1 and Dynamax
are faster than pykalman across all sequence lengths and dimension configurations. More
generally, StateSpaceDynamics. j1 and Dynamax exhibit similar performance at lower sequence
lengths (with Dynamax slightly outperforming StateSpaceDynamics.jl). However, Dynamax
exhibits superior scaling in both the dimensions of the state and observation matrices as well
as the temporal sequnce length. In our current implementation, the Hessian is represented as a
sparse matrix with block tridiagonal structure, resulting in @(Tn?) memory scaling — which is
optimal. However, we do not yet exploit this structure fully during inference. In particular, our
solver does not leverage specialized routines for block-banded systems (e.g., the block Thomas
algorithm), which can result in unnecessary fill-in and degraded performance at large T. Future
versions will use banded or block tridiagonal solvers to achieve truly linear-time inference.

In our HMM benchmarks, HiddenMarkovModels. j1 outperforms both StateSpaceDynamics. j1l
and Dynamax across most sequence lengths and state dimensions, with Dynamax only becoming
slightly faster for high state dimensions and long sequence lengths. StateSpaceDynamics.jl
outperforms Dynamax at low state dimensions for all sequence lengths but exhibits worse scaling
with the number of states, allowing Dynamax to overtake it as the number of states increases.
These results, combined with our primary development goals in hierarchical SSMs, highlight the
benefits of interfacing with HiddenMarkovModels. j1 for HMM-specific functionality. Efforts
are currently underway to make this interface seamless.

Taken together, these benchmarks demonstrate the competitiveness of StateSpaceDynamics. jl
for fitting state-space models. Our benchmarks are available in the benchmarking folder of
our repository, and instructions for running these are available in a README.md file.

Availability

StateSpaceDynamics.jl is publicly available under the GNU license at https://github.com/
depasquale-lab/StateSpaceDynamics.jl.

Future Directions

The current release of StateSpaceDynamics. j1 emphasizes efficient CPU-based implementa-
tions and analytically derived gradients and Hessians for commonly used observation mod-
els. Several avenues of future development will broaden the scope and accessibility of the
package. First, we plan to add optional support for automatic differentiation (AD) using
Julia's AD ecosystem (e.g., ForwardDiff.jl (Revels et al., 2016), Zygote.jl (Innes, 2018),
DifferentiationInterface.jl (Dalle & Hill, 2025)). This will allow users to prototype new
observation models without requiring hand-coded derivatives, while maintaining the existing
optimized implementations for speed-critical cases. Second, we aim to extend hardware support
to GPU backends by exploiting Julia's GPU array abstractions and block-tridiagonal solvers,
enabling large-scale inference with temporally parallel methods. Finally, we plan to expand
parameter inference options beyond maximum likelihood and Laplace-EM, including Bayesian
approaches via variational inference and interoperability with probabilistic programming frame-
works such as Turing.jl. Together, these developments will further enhance the package's
flexibility, performance, and utility across scientific disciplines.
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Conclusion

StateSpaceDynamics. j1 fills an existing gap in the Julia ecosystem for general state-space
modeling that exists in Python. Importantly, our package's approach is simple enough that
other candidate state-space models can be easily implemented. Further, this work provides a
foundation for future development of more advanced state-space models, such as the rSLDS,
which are essential for modeling complex neural data. We expect that this package will be of
interest to computational neuroscientists and other researchers working with high-dimensional
time series data and we are currently using its functionality in three separate projects.
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