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Summary
fastatomstruct is a Python library, implemented primarily in Rust, designed to efficiently
calculate a wide range of atomic structural and dynamical parameters. Using thread-based
parallelization via Rust’s rayon crate, the package provides fast and scalable performance for
analyzing atomic configurations. In particular, many functions in this library are targeted at the
structural and dynamical analysis of large liquid, supercooled-liquid, and amorphous systems.
Its primary audience includes researchers in computational materials physics, materials science,
and chemistry, though it is also broadly applicable to any field requiring detailed structural
analysis of atomic systems.

The library provides a comprehensive suite of tools for analyzing atomic configurations,
supporting the calculation of radial distribution functions, static structure factors, bond-
orientational parameters, and vibrational density of states, among others. By leveraging MPI-
based parallelization (mpi4py) alongside Rust’s rayon crate for thread-based parallelization,
fastatomstruct achieves high efficiency, making it particularly useful for large-scale simulations.

Statement of need
Understanding atomic structure and dynamics is fundamental in many scientific disciplines,
including the study of phase transitions, the behavior of supercooled liquids, and the exploration
of molecular interactions. Answering many questions in these fields requires simulations of
large systems. Today, this is possible with quantum mechanical accuracy using machine-learned
potentials (Friederich et al., 2021). However, efficiently calculating structural quantities from
large atomic simulations can be computationally expensive. Existing tools often lack support
for high-performance parallelization or the ability to integrate seamlessly with Python-based
analysis workflows, such as those built around the widely used Atomic Simulation Environment
(ASE) (Hjorth Larsen et al., 2017).

fastatomstruct addresses this gap by offering a Rust-backed implementation with efficient
parallelization techniques that exploit multicore processors and thread-based parallelization.
This allows researchers to investigate a wide range of atomic-scale phenomena. In materials
science, the library facilitates the study of phase transitions, e.g., crystallization or melting, by
tracking bond-orientational parameters and radial distribution functions, providing insights into
how atomic structures evolve under changing conditions. In condensed matter physics and
engineering, it enables the characterization of atomic defects, local structural distortions, and
vibrational properties, aiding in the design of materials with specific desired properties. The
library is particularly useful in the study of soft matter and supercooled liquids, where non-
Gaussian transport behavior, mean squared displacement, and velocity autocorrelation functions
help uncover the fundamental mechanisms of glassy dynamics. Furthermore, fastatomstruct
provides tools for analyzing molecular structure through three-body correlations and other
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structural parameters that go beyond the traditional two-body quantities like pair radial
distribution functions.

The library’s scalability makes it particularly suited for analyzing large datasets. For instance,
computing the coordination numbers of a bulk structure containing half a million atoms can
be completed in approximately 0.3 seconds on 96 cores (see Figure 2), demonstrating its
ability to handle high-throughput simulations efficiently. Figure 1 shows a comparison of a
radial distribution function calculation using fastatomstruct and the widely used MDAnalysis

Python library. The calculations yield equivalent results, but fastatomstruct is approximately
20 times faster due to its parallelized implementation. In comparison to other commonly used
packages such as MDAnalysis (Gowers et al., 2016; Michaud-Agrawal et al., 2011), pymatgen
(Ong et al., 2013), or functions built into ASE, fastatomstruct distinguishes itself through
its high-performance design and scalability. Its Rust-based core leverages advanced thread
and MPI parallelization strategies to achieve substantially faster processing of large datasets,
while ensuring memory and thread safety. Easy installation and direct integration with Python
workflows and established tools like ASE further streamline its usage, avoiding the complexity
often encountered with other codes.

Figure 1: Comparison of radial distribution function calculation between fastatomstruct and MDAnalysis

shows a 20× speedup with the parallelized implementation in fastatomstruct. The RDF was calculated
for a copper crystal with 108, 000 atoms. Calculations were performed on two Intel Xeon Gold 6140
processors with a total of 36 cores and threads. The speedup is mainly due to the parallelization of
distance calculations. Note that we do not observe an ideal 36× speedup as a) the simple distance
calculations required for the computation of the radial distribution function do not scale as well as the
calculation of more complex quantities like bond order correlation parameters (see Figure 3), b) some
calculation time is spent on the non-parallelized creation of the histogram, and c) there is overhead due
to the dual-processor setup.
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Features and background
The fastatomstruct library calculates a variety of structural quantities that provide insights
into atomic arrangements. Distances between atoms are calculated using a linear scaling
method (see Figure 2), which also allows for fast calculations of quantities like coordination
numbers. Spatial hashing enables efficient neighbor finding and distance calculations with
𝒪(𝑁) scaling instead of the 𝒪(𝑁2) complexity of naive all-pairs approaches. This algorithm
divides the simulation box into a regular grid of cells, where each cell has dimensions larger
than the maximum interaction cutoff radius. Each atom’s coordinates are converted into a
cell index using a hash function based on discretized spatial coordinates—hence the term
“spatial hashing”. Atoms are assigned to cells based on these hashed coordinates, and neighbor
searches only consider atoms within the same cell and its neighboring cells. For large systems,
this dramatically reduces the number of pairwise distance calculations required.

Figure 2: Linear scaling of distance calculations in fastatomstruct allows for efficient computation of
structural quantities. The distance between atoms is calculated using spatial hashing, which divides the
simulation box into cells and only considers atoms within neighboring cells. The calculations have been
performed on an AMD EPYC Genoa 9654 processor with 96 cores and threads.

The implemented structural quantities range from basic coordination analysis to more so-
phisticated higher-order correlation functions that capture complex geometric motifs. Bond-
orientational parameters (Steinhardt et al., 1983) and bond-order correlation parameters
(Ronneberger et al., 2016) use spherical harmonics with smooth cutoff functions to distinguish
between liquid and crystalline phases, while three-body correlations and their angular-limited
variants (Bichara et al., 1993) are particularly effective for identifying Peierls-like distortions in
disordered systems.

For dynamical analysis, the library provides tools to study both diffusive and vibrational
motion. Mean squared displacement calculations leverage the efficient tidynamics library
(Buyl, 2018), while non-Gaussian parameters quantify deviations from normal diffusion that
indicate dynamical heterogeneities. Intermediate scattering functions (both coherent and
incoherent) probe density fluctuations and single-particle motion, respectively. The overlap
parameter and four-point susceptibility measure spatial correlations in dynamics (Lačević
et al., 2003) and help identify dynamically correlated regions. Vibrational properties are
accessible through velocity autocorrelation functions and vibrational density of states, while
transport properties like viscosity can be calculated via Green-Kubo relations from stress tensor
autocorrelations.
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Table 1 provides a complete overview of all supported quantities, their mathematical definitions,
and relevant literature references.

Table 1: Summary of structural and dynamical quantities supported by fastatomstruct. Structural
quantities include basic measures like coordination numbers and radial distribution functions, as well
as sophisticated tools for phase identification such as bond-orientational parameters (𝑞𝑙) computed
via spherical harmonics, and bond order correlation parameters (𝑞dot𝑙 ) that distinguish crystalline from
amorphous environments. Three-body correlations (TBC) and angular-limited variants (ALTBC) capture
geometric motifs and Peierls-like distortions, while tetrahedral order parameters quantify local tetrahe-
dral coordination. Dynamical quantities encompass diffusive properties (mean squared displacement,
non-Gaussian parameters), density fluctuation probes (intermediate scattering functions), dynamical
correlation measures (overlap parameters, four-point susceptibility), and vibrational properties (velocity
autocorrelation, vibrational density of states). Transport coefficients like viscosity are accessible through
Green-Kubo relations. All calculations employ efficient algorithms with spatial hashing for neighbor
finding and support both thread-based and MPI parallelization.

Quantity Formula
Literature
reference(s)

Structural Quantities

Coordination Number CN = ∑𝑗 Θ(𝑟cut − ‖r𝑖 − r𝑗‖) Standard structural
analysis

Radial Distribution
Function

𝑔(𝑟) = 𝑑𝑛𝑟
4𝜋𝜌𝑟2𝑑𝑟 Standard statistical

mechanics

Static Structure
Factor

𝑆(𝑞) = 1 + 4𝜋𝜌∫∞
0

𝑟2[𝑔(𝑟) − 1] sin(𝑞𝑟)𝑞𝑟 𝑑𝑟 Standard scattering
theory

Bond Angle
Distribution

cos 𝜃𝑖𝑗𝑘 = r𝑖𝑗⋅r𝑖𝑘
𝑟𝑖𝑗𝑟𝑖𝑘

Standard geometric
analysis

Three-Body
Correlation

𝑔(3)(𝑟1, 𝑟2) =
𝑉

𝜌(𝑁−1)(𝑁−2) ∑𝑖1,𝑖2,𝑖3
⟨𝛿(𝑟1 − 𝑟𝑖1𝑖2)𝛿(𝑟2 −

𝑟𝑖2𝑖3)⟩

Ronneberger et al.
(2016)

Angular-Limited TBC 𝑔(3)AL(𝑟1, 𝑟2) =
𝑉

𝜌(𝑁−1)(𝑁−2) ∑𝑖1,𝑖2,𝑖3
⟨𝛿(𝑟1 − 𝑟𝑖1𝑖2)𝛿(𝑟2 −

𝑟𝑖2𝑖3)Θ(𝛽 − 𝛿)⟩

Bichara et al. (1993)

Bond Length Ratio ALBLR =
∑ max(𝑟12,𝑟23)

min(𝑟12,𝑟23)
Θ(𝛽−𝛿)Θ̄(𝑟12)Θ̄(𝑟23)

∑Θ(𝛽−𝛿)Θ̄(𝑟12)Θ̄(𝑟23)
Holle et al. (2025)

Bond-Orientational
Parameters

𝑞𝑙 = √ 4𝜋
2𝑙+1 ∑

𝑙
𝑚=−𝑙 ‖𝑞𝑙𝑚‖2 Steinhardt et al.

(1983)

Bond Order
Correlation

𝑞dot𝑙 (𝑖) = 1
𝑁eff

𝑖
∑𝑗 𝑓(𝑟𝑖𝑗)𝐶𝑖𝑗 Ronneberger et al.

(2016), ten Wolde et
al. (1995)

Tetrahedral Order
Parameter

𝑞tetrahedral = 1 − 3
8 ∑𝑖>𝑘 (

1
3 + 𝜃𝑖𝑗𝑘)

2 Lee et al. (1993),
Duboué-Dijon &
Laage (2015)
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Quantity Formula
Literature
reference(s)

Dynamical Quantities

Mean Squared
Displacement

MSD(𝑡) = 1
𝑁 ∑𝑁

𝑖=1⟨‖r𝑖(𝑡) − r𝑖(0)‖2⟩ Standard diffusion
analysis, Buyl (2018)

Non-Gaussian
Parameter

𝛼2(𝑡) =
1
𝑁 ∑𝑁

𝑖=1⟨‖r𝑖(𝑡)−r𝑖(0)‖4⟩

( 1
𝑁 ∑𝑁

𝑖=1⟨‖r𝑖(𝑡)−r𝑖(0)‖2⟩)
2 − 1 Standard diffusion

analysis

Intermediate
Scattering Function

𝐹(𝑞, 𝑡) = 1
𝑁 ∑𝑁

𝑖,𝑗⟨exp[𝑖𝑞 ⋅ (𝑟𝑖(𝑡)−𝑟𝑗(0))]⟩ Standard scattering
theory

Incoherent ISF 𝐹incoh(𝑞, 𝑡) =
1
𝑁 ∑𝑁

𝑖 ⟨exp[𝑖𝑞 ⋅ (𝑟𝑖(𝑡) − 𝑟𝑖(0))]⟩
Standard scattering
theory

Overlap Parameter 𝑄(𝑡) = ∑𝑁
𝑖,𝑗=1 𝑤(‖r𝑖(0) − r𝑗(𝑡)‖) Lačević et al. (2003)

Four-Point
Susceptibility

𝜒4(𝑡) =
𝛽𝑉
𝑁2 ⟨𝑄2(𝑡)⟩ − ⟨𝑄(𝑡)⟩2 Lačević et al. (2003)

Velocity
Autocorrelation

𝐶𝑣(𝑡) = 1
𝑁 ∑𝑁

𝑖=1⟨v𝑖(0) ⋅ v𝑖(𝑡)⟩ Standard vibrational
analysis

Vibrational Density of
States

Fourier transform of VACF or direct FFT of
velocities

Schmerler (2025)

Viscosity 𝜂 = 𝑉
𝑘B𝑇

lim𝑇→∞ ∫𝑇
0
⟨𝜎𝑥𝑦(𝑡′)𝜎𝑥𝑦(0)⟩𝑑𝑡′ Cui et al. (1996)

Finally, we would like to note that parallelization is a core strength of the library. Thread-
based parallelization using Rust’s rayon library ensures efficient use of multicore processors,
while image-based parallelization with MPI enables scalability to datasets with many differ-
ent snapshots. Figure 3 shows the scaling behavior of different functions implemented in
fastatomstruct. The library’s compatibility with ASE and other Python-based tools further
simplifies integration and usability for researchers. The Rust implementation has several
advantages over more traditional approaches like combining Python with C or Fortran (Perkel,
2020). By design, Rust guarantees both memory and thread safety, which excludes entire
classes of bugs that are common in other languages. In particular, Rust’s ownership concept
prevents race conditions, which makes it straightforward to write parallel code that is both
fast and correct. The Rust compiler provides extensive static analysis, which can catch many
bugs at compile time. As a result, fastatomstruct is a very robust and reliable library for
structural and dynamical analysis of atomic systems. We hope that our approach using a
rather non-traditional language for scientific computing can inspire other works to adopt Rust
for high-performance computing tasks. Besides the advantages over languages like C/C++ or
Fortran mentioned above, Rust also offers modern tooling and easy integration with Python
through the PyO3 crate, and it can be interfaced with existing C/C++ or Fortran code. In-
creased usage of Rust should also improve the overall quality of scientific software by finding
and eliminating common bugs very early in the development process.
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Figure 3: Scaling behavior of exemplary calculations with fastatomstruct. Relative speed-ups compared
to a single thread (top) and total calculation times (bottom) are shown for calculations of coordination
numbers, bond order correlation, and the incoherent intermediate scattering function. Tests have been per-
formed on an AMD EPYC Genoa 9654 processor with 96 cores and threads. A system with 32, 000 atoms
was used for the calculation of the bond order correlation parameter 𝑞dot4 . 256, 000 atoms were used for
coordination number calculations. The incoherent intermediate scattering function was calculated for 600
snapshots from a molecular dynamics simulation with 32, 000 atoms. Scalability for large thread counts is
limited because the calculations are memory bound, which particularly holds for the intermediate scattering
function calculations. The repository contains an example (examples/perf_intermediate_scattering)
to demonstrate this.
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Applications in Research
The fastatomstruct package enables the study of a wide range of structural and dynamical
phenomena, while integrating well into many existing workflows based on the Atomic Simulation
Environment (Hjorth Larsen et al., 2017). For instance, researchers can analyze phase transitions
in amorphous materials by calculating bond-orientational parameters, which provide insights
into changes in local atomic order. The library is particularly suited for studying the dynamics of
supercooled liquids and glasses. This has been exploited in recent studies of liquid, supercooled-
liquid and glassy antimony (Holle et al., 2025).
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