The Journal of Open Source Software

DOI: 10.21105/joss.08112

Software
= Review &7
= Repository @
= Archive &0

Editor: Mark A. Jensen &7
Reviewers:
= @kumiori

= @majensen

Submitted: 23 March 2025
Published: 11 September 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

pyCLINE: A Python package using the CLINE method
for discovery of nullcline structures in oscillatory
dynamics

1

Bartosz Prokop @9, Nikit Frolov®?!, and Lendert Gelens

1 Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU
Leuven § Corresponding author

Summary

Dynamical processes in physics, biology, chemistry, and engineering—such as planetary motion,
climate variability, and cell cycle oscillations—are crucial to understanding complex systems.
Traditionally, mathematical models describing these systems rely on differential equations
derived from empirical data using established modeling principles and scientific intuition.
However, the increasing availability of high-dimensional, complex datasets has rendered classical
model derivation increasingly challenging.

As a result, data-driven or machine learning methods emerged that are able to handle high-
dimensional data sets. However existing methods either are limited by data quality or the
interpretability of their results. Thus we developed the CLINE (Computational Learning
and Inference of NullclinEs) (Prokop et al., 2025) and introduce its Python implementation
pyCLINE that allows users to extract and identify static phase-space structures without prior
knowledge directly from time series data.

Statement of need

Machine learning and data-driven approaches have revolutionized the study of dynamical
systems. Two primary methodologies exist:

= Black-box methods (e.g., neural networks) approximate system behavior but lack inter-
pretability regarding underlying mechanisms.

= White-box methods derive symbolic differential equations directly from data but require
high-quality datasets to ensure accuracy (Prokop & Gelens, 2024).

To bridge this gap, grey-box methods integrate the strengths of both approaches, handling large,
structured datasets while preserving interpretability. Examples include Physics-Informed Neural
Networks (PINNs) (Karniadakis et al., 2021), Biology-Informed Neural Networks (BINNs)
(Lagergren et al., 2020), and Universal Differential Equations (Rackauckas et al., 2020).
However, most of these methods focus on forecasting rather than extracting fundamental
structural properties of dynamical systems.

To address this limitation, our method CLINE is able to extract static phase-space features,
specifically the structure of nullclines, from time series data without forecasting.
Understanding nullcline structure of a dynamical system provides several key benefits (Prokop
et al., 2024):

= Comprehensive System Characterization: Nullclines fully describe the system’s steady-
state behavior and provide richer insights than time series data alone.

Prokop et al. (2025). pyCLINE: A Python package using the CLINE method for discovery of nullcline structures in oscillatory dynamics. Journal 1
of Open Source Software, 10(113), 8112. https://doi.org/10.21105/joss.08112.

https://orcid.org/0000-0001-9723-0176
https://orcid.org/0000-0002-2788-1907
https://orcid.org/0000-0001-7290-9561
https://doi.org/10.21105/joss.08112
https://github.com/openjournals/joss-reviews/issues/8112
https://gitlab.kuleuven.be/gelenslab/publications/pycline
https://doi.org/10.5281/zenodo.17036386
https://www.linkedin.com/in/fortinbras/
https://orcid.org/0000-0001-5215-101X
https://github.com/kumiori
https://github.com/majensen
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08112

The Journal of Open Source Software

= Reduced Complexity for Symbolic Model Identification: Once nullcline structures are
identified, symbolic equations can be inferred using sparse regression techniques, such as
sparse identification of nonlinear dynamics (SINDy) (Brunton et al., 2016) or symbolic
regression (SR) (Schmidt & Lipson, 2009), with significantly lower computational
complexity compared to direct time-series-based approaches.

= Bias Reduction through Model-Free Inference: Unlike traditional white-box methods,
CLINE does not rely on predefined candidate terms (e.g., library-based functions),
minimizing biases in model formulation and increasing adaptability to diverse systems.

pyCLINE is a Python package that allows one to easily set up and use the CLINE method as
explained and shown in Prokop et al. (2025). It is based on the Python Torch implementation
pyTorch (Paszke et al., 2019) and enables rapid identification of nullcline structures from
simulated or measured time series data. The implementation of pyCLINE can generate exemple
data sets from scratch, correctly prepare data for training and set up the feed forward neural
network for training.

pyCLINE was designed to be used by researchers experienced with the use of machine learning or
nonspecialists that are interested in applying the method to either different models or measured
data. This allows for simple and fast implementation in many fields that are interested in
discovering nullcline structures from measured data, that can help develop novel or confirm
existing models of dynamical (oscillatory) systems.

Methodology

The main aspects of the CLINE method are explained in Prokop et al. (2025), nevertheless we
provide a brief explanation of the method. In order to identify nullclines for a set of ordinary
differential equations (ODEs) with system variables u and v, we have to set the derivative to 0:

u, = f(u,v) = u, = f(u,v) =0

v, = g(u,v) = v, = g(u,v) =0

The functions of f and g are not known a priori. However, to learn the functions we can
reformulate the nullcline equations to:

U= f_l(’U,’U,t) orv= f_l(uaut)
-1
u=g (’U,Ut) orv=g (U,’Ut)
Now we have to learn the inverse functions f~' and g~! which describe the relationship
between the measured variables u and v with additional derivative information u, or v, As

such, the target functions can be expressed as a feed-forward neural network with e.g. inputs
u and u,, to learn v.

After training, we can provide a set of u together with u, = 0 (requirement for a nullcline) as
inputs and learn the corresponding values of v that describe u, = f(u,v) = 0. As a result, we
learn the structure of a nullcline in the phase space u, v, to which other white-box methods can
be applied to learn the symbolic equations, yet on a decisively simpler optimization problem
then that on time series data.

Usage

The pyCLINE package can be downloaded and installed using pip:
pip install pyCLINE

The pyCLINE package includes three main modules (see Figure 1):

Prokop et al. (2025). pyCLINE: A Python package using the CLINE method for discovery of nullcline structures in oscillatory dynamics. Journal 2
of Open Source Software, 10(113), 8112. https://doi.org/10.21105/joss.08112.

https://doi.org/10.21105/joss.08112

The Journal of Open Source Software

pyCLINE.generate_data(): This module generates data which has been used in
Prokop et al. (2025) along with many additional models that can be found under
pyCLINE.model().

pyCLINE.recovery_methods.data_preparation(): Splits and normalizes that data for
training, with many more features for the user to change the data.
pyCLINE.recovery_methods.nn_training(): The pyTorch implementation that sets up
the model and trains it.

The pyCLINE.model() currently includes a set of different models:

FitzHugh-Nagumo model

Bicubic model

Gene expression model

Glycolytic oscillation model
Goodwin model

Oregonator model

Lorenz system

Roessler system

Delay oscillator (self-inhibitory gene)

Some of the models are three-dimensional and can be used to further study the limitations of
the method, when applied to higher dimensional systems.

To demonstrate the method, we also provide pyCLINE.example() which contains full examples
of how pyCLINE can be used. Here, pyCLINE.example() can be used to generate prediction
data for four systems: The FitzHugh-Nagumo model with time scale separation variable
€ = 0.3 (FHN), the Bicubic model (Bicubic), gene expression model (GeneExpression) and
the delay oscillator model (DelayOscillator).

Prokop et al. (2025). pyCLINE: A Python package using the CLINE method for discovery of nullcline structures in oscillatory dynamics. Journal 3
of Open Source Software, 10(113), 8112. https://doi.org/10.21105/joss.08112.

https://doi.org/10.21105/joss.08112

SS

The Journal of Open Source Software

bynam]ca[System
pyCLINE.generate_data()

1& —
u

imit cycle g
P e / 5
s > Ny
S Time v §
o v -
S 3
o — $
S
-‘E Time g u - —
]
S 45?
g Learning hidden information !1 ¢
- -
*5 9=0
E \
>
g g
:
2 =
z 8
= o
Q o
> / ‘ 3

nulleline v
u .

pyCLINE.recovery_methods.nn_training()

Figure 1: The method CLINE explained by using Figure 1 from Prokop et al. (2025). In red the main
modules of the pyCLINE package are shown.

References

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15), 3932-3937. https://doi.org/10.1073/pnas.1517384113

Karniadakis, G. E., Kevrekidis, |. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440. https:
//doi.org/10.1038 /s42254-021-00314-5

Lagergren, J. H., Nardini, J. T., Baker, R. E., Simpson, M. J., & Flores, K. B. (2020).
Biologically-informed neural networks guide mechanistic modeling from sparse experimental
data. PLOS Computational Biology, 16(12), e1008462. https://doi.org/10.1371/journal.
pcbi.1008462

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., .. Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library. NeurlPS, NeurlPS, 8026-8037.
https://doi.org/10.48550/arXiv.1912.01703

Prokop, B., Billen, J., Frolov, N., & Gelens, L. (2025). Machine learning identifies nullclines in
oscillatory dynamical systems. Preprint at ArXiv. https://doi.org/10.48550/arXiv.2503.
16240

Prokop, B., Frolov, N., & Gelens, L. (2024). Enhancing model identification with SINDy via

Prokop et al. (2025). pyCLINE: A Python package using the CLINE method for discovery of nullcline structures in oscillatory dynamics. Journal 4
of Open Source Software, 10(113), 8112. https://doi.org/10.21105/joss.08112.

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1371/journal.pcbi.1008462
https://doi.org/10.1371/journal.pcbi.1008462
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.2503.16240
https://doi.org/10.48550/arXiv.2503.16240
https://doi.org/10.21105/joss.08112

The Journal of Open Source Software

nullcline reconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(6),
063135. https://doi.org/10.1063/5.0199311

Prokop, B., & Gelens, L. (2024). From biological data to oscillator models using SINDy.
iScience, 27(4), 109316. https://doi.org/10.1016/].isci.2024.109316

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D.,
Ramadhan, A., & Edelman, A. (2020). Universal Differential Equations for Scientific
Machine Learning. Preprint at ArXiv. https://doi.org/10.48550/arXiv.2001.04385

Schmidt, M., & Lipson, H. (2009). Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923), 81-85. https://doi.org/10.1126/science.1165893

Prokop et al. (2025). pyCLINE: A Python package using the CLINE method for discovery of nullcline structures in oscillatory dynamics. Journal 5
of Open Source Software, 10(113), 8112. https://doi.org/10.21105/joss.08112.

https://doi.org/10.1063/5.0199311
https://doi.org/10.1016/j.isci.2024.109316
https://doi.org/10.48550/arXiv.2001.04385
https://doi.org/10.1126/science.1165893
https://doi.org/10.21105/joss.08112

	Summary
	Statement of need
	Methodology

	Usage
	References

