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Summary
We introduce PositiveIntegrators.jl, a Julia package that provides efficient implementations of
various time integration schemes for the solution of positive ordinary differential equations,
making these methods accessible for users and comparable for researchers. Currently, the
package provides the unconditionally positivity-preserving MPRK, SSP-MPRK, and MPDeC
schemes, which are also conservative when applied to a conservative system. The package is
fully compatible with DifferentialEquations.jl, which allows a direct comparison between the
provided schemes and standard methods.

Statement of need
Many systems of ordinary differential equations that model real-life applications have positive
solutions. For some of these systems unconditionally positivity-preserving time integration
methods are helpful or even necessary to obtain meaningful solutions.

Unfortunately, positivity is not preserved in almost any of the standard time integration
schemes, such as Runge–Kutta methods, Rosenbrock methods, or linear multistep methods.
In particular, higher-order general linear methods cannot preserve positivity unconditionally
(Bolley & Crouzeix, 1978). The only standard scheme with which unconditional positivity
can be achieved is the implicit Euler method (assuming that the nonlinear systems are solved
exactly). However, this is only first-order accurate and the preservation of positivity within the
nonlinear iteration process poses a problem. For example, it may happen that the right-hand
side of the differential equation is only defined for nonnegative values and would throw an error
if a negative value is passed to it, e.g., in the case of a square root. Standard nonlinear solvers
like Newton’s method or fixed-point iterations will in general not only produce iterates that
are nonnegative, causing the iteration to fail. Another strategy for preserving positivity used
in existing open source or commercial packages (like MATLAB) is to set negative solution
components that are accepted by the step size control to zero. Unfortunately, this can have
a negative impact on possible conservation properties. Further approaches in the literature
include projections in between time steps (Nüßlein et al., 2021; Sandu, 2001), if a negative
solution was computed, or it is tried to reduce the time step size as long as a nonnegative
solution is calculated. Finally, strong stability preserving (SSP) methods can also be used to
preserve positivity, but this is again subject to step size limitations (Gottlieb et al., 2011).

Consequently, various new, unconditionally positive schemes have been introduced in recent
years, see Burchard et al. (2003), Bruggeman et al. (2007), Broekhuizen et al. (2008),
Formaggia & Scotti (2011), Ortleb & Hundsdorfer (2017), Kopecz & Meister (2018a), Kopecz
& Meister (2018b), Huang & Shu (2019), Huang et al. (2019), Öffner & Torlo (2020),
Martiradonna et al. (2020), Ávila et al. (2020), Ávila et al. (2021), Blanes et al. (2022), Zhu
et al. (2024), Izzo et al. (2025), and Izgin et al. (2025). Among these, most of the literature
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is devoted to modified Patankar–Runge–Kutta (MPRK) methods.

Unfortunately, these new methods are not yet available in software packages, making them
inaccessible to most users and limiting their comparability within the scientific community.
PositiveIntegrators.jl aims at making these methods available and thus usable and comparable.

Features
PositiveIntegrators.jl is written in Julia (Bezanson et al., 2017) and makes use of its strengths
for scientific computing, e.g., ease of use and performance. The package is fully compatible
with DifferentialEquations.jl (Rackauckas & Nie, 2017) and therefore many features that are
available there can be used directly. In particular, this allows a direct comparison of the
provided methods and standard schemes. Moreover, it integrates well with the Julia ecosystem,
e.g., by making it simple to visualize numerical solutions using dense output in Plots.jl (Christ
et al., 2023).

The package offers implementations of conservative as well as non-conservative production-
destruction systems (PDS), which are the building blocks for the solution of differential equations
with MPRK schemes. Furthermore, conversions of these PDS to standard ODEProblems from
DifferentialEquations.jl are provided.

Currently, the package contains the following methods:

• The MPRK methods MPE, MPRK22, MPRK43I, and MPRK43II of Kopecz & Meister (2018a)
and Kopecz & Meister (2018b) are based on the classical formulation of Runge–Kutta
schemes and have accuracies from first to third order.

• The MPRK methods SSPMPRK22 and SSPMPRK43 of Huang & Shu (2019) and Huang et
al. (2019) are based on the SSP formulation of Runge–Kutta schemes and are of second
and third order, respectively.

• The MPDeC methods of Öffner & Torlo (2020) combine the deferred correction approach
with the idea of MPRK schemes to obtain schemes of arbitrary order. In the package
methods from second up to 10th order are implemented.

In addition, all implemented methods have been extended so that non-conservative and non-
autonomous PDS can be solved as well. Furthermore, adaptive step size control is available
for almost all schemes.

Related research and software
The first MPRK methods were introduced by Burchard et al. (2003). These are the first-order
scheme MPE and a second-order scheme based on Heun’s method. To avoid the restriction
to Heun’s method, the second-order MPRK22 schemes were developed by Kopecz & Meister
(2018a). The techniques developed therein also enabled a generalization to third-order schemes
and thus the introduction of MPRK43I and MPRK43II methods by Kopecz & Meister (2018b).

The aforementioned schemes were derived from the classical formulation of Runge-Kutta
methods. Using the Shu-Osher formulation instead lead to the introduction of the second-order
schemes SSPMPRK22 by Huang & Shu (2019) and the third-order scheme SSPMPRK43 by Huang
et al. (2019).

Starting from a low-order method, the deferred correction approach can be used to increase the
method’s approximation order iteratively. Öffner & Torlo (2020) combined deferred correction
with the MPRK idea to devise MPRK schemes of arbitrary order. These are implemented as
MPDeC schemes for orders 2 up to 10.

The implemented methods were originally introduced for conservative production-destruction
systems only. An extension to non-conservative production-destruction systems was presented
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by Meister & Benz (2015). We implemented a modification of this algorithm, by treating the
non-conservative production and destruction terms separately, weighting the destruction terms
and leaving the production terms unweighted.

Readers interested in additional theoretical background, further properties of the implemented
schemes, and some applications are referred to the publications of Kopecz & Meister (2019),
Izgin et al. (2022a), Izgin et al. (2022b), Huang et al. (2023), Torlo et al. (2022), and Izgin
& Öffner (2023). PositiveIntegrators.jl was successfully applied in the work of Bartel et al.
(2024) to solve Fokker-Planck equations, ensuring the positivity of the unknown quantities.

Existing software libraries do not have a strong focus on unconditional positivity and, to the
authors’ knowledge, there is no other software library offering MPRK schemes. A common
strategy to obtain nonnegative solutions used in the PositiveDomain callback of DifferentialE-
quations.jl or the commercial package MATLAB is described by Shampine et al. (2005). In
this approach negative components of approximate solutions that have been accepted by the
adaptive time stepping algorithm are set to zero. Another possibility is to reduce the chosen
time step size beyond accuracy considerations until a nonnegative approximation is calculated.
This can be achieved in DifferentialEquations.jl using the solver option isoutofdomain.

We also mention that some papers on MPRK schemes offer supplementary codes. However,
these are mainly small scripts for the reproduction of results shown in the papers and are not
intended as software libraries.
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