
PyPaperRetriever: A Python Tool for Finding and
Downloading Scientific Literature
Joseph I Turner 1,2 and Kaydance D Turner3

1 NYU Grossman School of Medicine 2 Center for Brain Circuit Therapeutics, Harvard Medical School 3
Department of Computer Science, Brigham Young University

DOI: 10.21105/joss.08135

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @xavieryao
• @PetrKorab

Submitted: 29 January 2025
Published: 19 September 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PyPaperRetriever is a Python tool that automates the discovery and retrieval of scientific
literature, starting from either a DOI or PubMed ID. It queries multiple sources—Unpaywall,
NIH Entrez/PMC, and Crossref—to locate and download lawfully available PDFs, prioritizing
open access. The tool supports programmatic PubMed searches with custom queries, enabling
at‑scale retrieval where lawfully available, metadata resolution, and optional figure extraction
in a single, reproducible workflow. Usable via command line or as a Python module, PyPaper-
Retriever provides a scalable, PubMed‑first solution for literature reviews, dataset creation,
and other projects requiring comprehensive literature aggregation.

Legal/Ethical Notice: This article documents software that prioritizes lawfully available
sources (e.g., PubMed Central, Unpaywall‑indexed OA, and publisher‑permitted copies). It
does not instruct readers to access or download materials from unauthorized sources. Any
references to third‑party websites that may host unauthorized copies are provided only for
contextual completeness and are not endorsed. Readers are solely responsible for compliance
with applicable laws and institutional policies.

Core Features

Figure 1: PyPaperRetriever paper retrieval workflow.

Turner, & Turner. (2025). PyPaperRetriever: A Python Tool for Finding and Downloading Scientific Literature. Journal of Open Source Software,
10(113), 8135. https://doi.org/10.21105/joss.08135.

1

https://orcid.org/0009-0009-2423-3451
https://doi.org/10.21105/joss.08135
https://github.com/openjournals/joss-reviews/issues/8135
https://github.com/JosephIsaacTurner/pypaperretriever/
https://doi.org/10.5281/zenodo.17029480
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/xavieryao
https://github.com/PetrKorab
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08135


1. Find and Download PDFs for a Given DOI or PubMed ID: PyPaperRetriever can find
and download PDFs for a given DOI or PubMed ID by querying multiple APIs, including
Unpaywall, NIH’s Entrez, and Crossref. If a PDF is lawfully available (e.g., via PubMed Central
or publisher‑permitted OA), PyPaperRetriever will download it to the user’s system.

Figure 2: PubMedSearcher workflow for searching PubMed programmatically.

2. Search PubMed programmatically: PyPaperRetriever can search PubMed using a query
string and download PDFs of the search results where lawfully available (e.g., PubMed Central
or publisher‑provided OA). This feature is useful for researchers who want to download multiple
papers based on a specific topic or keyword.

3. Extract figures/images from PDFs: PyPaperRetriever can extract figures and images from
PDFs and save them as PNG files. This feature is useful for researchers who want to extract
and analyze figures or images from scientific papers, and is robust to a variety of PDF formats.
PyPaperRetriever has been used to build an extensive catalog of brain lesion images for training
computer vision models.

4. Finding references, and building citation networks: PyPaperRetriever allows users to
track a paper’s citation network using a DOI or PubMedID. It finds papers that reference
the given paper, as well as the papers it references. This process can be repeated recursively
to any desired depth, enabling users to explore how the paper has influenced others and the
foundational work it is built upon across multiple generations of citations.

Statement of Need
Efficient, reproducible access to full texts at scale remains a bottleneck for systematic reviews,
dataset construction, and downstream AI/LLM workflows. Manually locating and downloading
PDFs is tedious and time‑consuming(Singh et al., 2011; Zhang et al., 2023), even with recent
advances in open access (OA) and indexes like Unpaywall. Biomedical researchers often begin
with PubMed queries rather than DOI lists, and converting those results into full‑text PDFs

Turner, & Turner. (2025). PyPaperRetriever: A Python Tool for Finding and Downloading Scientific Literature. Journal of Open Source Software,
10(113), 8135. https://doi.org/10.21105/joss.08135.

2

https://doi.org/10.21105/joss.08135


involves several steps: resolving metadata from search results, handling newly posted green
OA, validating links, and downloading large batches reliably. Without a dedicated tool, most
labs resort to ad‑hoc glue code and custom scripts that are hard to maintain.

PyPaperRetriever automates this process. It provides a PubMed-first, end-to-end pipeline that:
(i) executes complex PubMed searches; (ii) resolves and downloads full text from multiple
sources (prioritizing OA sources such as PubMed Central and publisher‑permitted copies); (iii)
supports downstream analyses such as figure extraction and citation graphs; and (iv) integrates
cleanly into Python workflows.

The tool has been extensively used in research, including aggregation of over 7,000 brain
lesion case reports for LesionBank.org and several thousand additional downloads for related
neuroscience projects. By streamlining literature retrieval and integrating advanced search
capabilities, PyPaperRetriever saves substantial time in projects requiring comprehensive
literature aggregation, and it has been successfully embedded into PRISMA pipelines for
systematic review workflows.

Looking ahead, the ability to leverage Large Language Models (LLMs) for screening full text,
extracting detailed insights, and mining not only abstracts but also full-text content, figures,
and images represents a critical step for the next generation of AI-driven literature tools(Oami et
al., 2024; Scherbakov et al., 2024). PyPaperRetriever provides the foundational infrastructure
for these advancements, ensuring researchers can access and process the literature at scale.

Methods
PyPaperRetriever is a Python‑based tool designed to search, retrieve, and analyze scientific
papers using a structured, object‑oriented approach. The primary class, PaperRetriever,
serves as the central interface and can be used both via the command line and as an
importable module for integration into custom Python scripts or Jupyter notebooks. Supporting
classes—PubMedSearcher, ImageExtractor, PaperTracker, and ReferenceRetriever—extend its
capabilities, allowing for enhanced paper searching, citation tracking, and figure extraction.

Object-Oriented Structure

The software is structured around the following classes:

• PaperRetriever: The core class responsible for retrieving scientific papers. It supports
searching for papers using DOIs or PubMed IDs and attempts to download them using
multiple external sources. This class is importable from the PyPaperRetriever module
and can also be executed via the command line.

• PubMedSearcher: Facilitates keyword-based searching of PubMed, retrieving metadata,
and assembling structured datasets of search results.

• ImageExtractor: Extracts images and figures from downloaded PDFs, handling both
native and image-based PDFs.

• ReferenceRetriever: Gathers references and citations for a given paper using multiple
external APIs.

• PaperTracker: Builds citation networks by tracing references upstream (papers cited by
the target paper) and downstream (papers that cite the target paper), storing results in
structured DataFrames.

Command-Line vs. Programmatic Usage

• Command-Line Interface (CLI): The PaperRetriever class can be executed directly from
the command line using the main() function, allowing users to quickly retrieve papers
without writing additional code.

Turner, & Turner. (2025). PyPaperRetriever: A Python Tool for Finding and Downloading Scientific Literature. Journal of Open Source Software,
10(113), 8135. https://doi.org/10.21105/joss.08135.

3

https://doi.org/10.21105/joss.08135


• Python Module Import: While PaperRetriever can be used standalone, the supporting
classes (PubMedSearcher, ImageExtractor, PaperTracker, and ReferenceRetriever) are
intended for use in Python scripts and Jupyter notebooks, providing more flexibility for
data analysis and automation.

Similar Tools
Several tools exist for finding and downloading scientific literature, but PyPaperRetriever
stands out due to its versatility and robust integration with multiple APIs. Here, we compare
PyPaperRetriever with similar tools to highlight its advantages:

1. Unpaywall

Unpaywall is a widely used open‑access index for DOIs, offering a REST API that identifies
locations of freely available PDFs on the web. It’s integrated into many reference managers
and academic tools, and even has an R client for programmatic access. While Unpaywall is
excellent for finding OA versions of papers, it is DOI‑centric and does not support PubMed
ID–based searches; nor does it provide a complete end‑to‑end solution for downloading PDFs
at scale.

PyPaperRetriever builds on Unpaywall by handling the entire workflow, from running PubMed
searches, to resolving mixed PMID/DOI metadata, to downloading PDFs, with additional
queries to NIH’s Entrez (PubMed/PMC) and Crossref to improve coverage. In practice, we’ve
found that Unpaywall’s API can occasionally miss newly deposited green OA copies or point
to PDFs that are hosted in ways that block automated retrieval. By cross-checking multiple
sources and validating links, PyPaperRetriever improves recall and reliability, helping ensure
that open-access copies outside Unpaywall’s current index are found and retrieved.

2. PyPaperBot

PyPaperBot (Ferrulli, 2020), while functional, has significant limitations that prompted the
development of PyPaperRetriever. PyPaperBot relies primarily on Sci‑Hub, which is ethically
controversial, may be unlawful to use in many jurisdictions, and is often blocked by academic
institutions and in certain countries. Additionally, it lacks support for PubMed ID‑based
searches, a critical feature for researchers in biomedical sciences.

PyPaperRetriever addresses these shortcomings through several key improvements. It integrates
with three different APIs (Unpaywall, NIH’s Entrez, and Crossref) to expand access to a wide
range of sources, and prioritizes open‑access sources. The tool also supports PubMed ID
searches and programmatic PubMed queries, while enabling module‑level imports for integration
into Python workflows, unlike PyPaperBot’s command‑line‑only functionality.

3. Proprietary Software

There are several proprietary software tools for managing scientific literature, including Dis-
tillerSR and Convidence. These often come with high costs and limited flexibility. PyPaperRe-
triever offers a free, open‑source alternative with comparable functionality.

Ethical and legal note on Sci-Hub
Use of third‑party sites that may host unauthorized copies (e.g., Sci‑Hub) can be unlawful in
many jurisdictions, and institutions commonly block such access. This article does not provide
instructions for accessing or downloading materials from unauthorized sources. PyPaperRe-
triever prioritizes lawfully available sources (e.g., PubMed Central, Unpaywall‑indexed OA, and
publisher‑permitted copies). The authors do not endorse or encourage any unlawful use; users
are responsible for ensuring compliance with applicable laws, licenses, and institutional policies.

Turner, & Turner. (2025). PyPaperRetriever: A Python Tool for Finding and Downloading Scientific Literature. Journal of Open Source Software,
10(113), 8135. https://doi.org/10.21105/joss.08135.

4

https://doi.org/10.21105/joss.08135


Availability
All code and documentation for PyPaperRetriever are available on GitHub. The tool is
distributed under the MIT License, allowing for free use, modification, and redistribution.
Instructions for installation and usage are provided in the README file. We welcome
contributions and feedback from the community to improve the tool and expand its capabilities.
Opening an issue on the GitHub repository is the best way to report bugs or request features;
pull requests are also welcome for contributions and will be reviewed promptly.

Acknowledgements
JIT conceived the idea for PyPaperRetriever, developed the codebase, and wrote documentation.
JIT is the primary author of this paper and takes full responsibility for the content. KDT also
provided feedback on the tool’s design and functionality, contributed to the documentation,
and assisted in testing and debugging.

References
Ferrulli, V. (2020). PyPaperBot: A tool to automatically download scientific papers. In GitHub

repository. GitHub. https://github.com/ferru97/PyPaperBot

Oami, T., Okada, Y., & Nakada, T. A. (2024). Performance of a Large Language Model in
Screening Citations. JAMA Network Open, 7(7), e2420496. https://doi.org/10.1001/
jamanetworkopen.2024.20496

Scherbakov, D., Hubig, N., Jansari, V., Bakumenko, A., & Lenert, L. A. (2024). The
emergence of Large Language Models (LLM) as a tool in literature reviews: an LLM
automated systematic review. https://doi.org/10.48550/arXiv.2409.04600

Singh, A., Singh, M., Singh, A. K., Singh, D., Singh, P., & Sharma, A. (2011). ”Free full
text articles”: where to search for them? International Journal of Trichology, 3(2), 75–79.
https://doi.org/10.4103/0974-7753.90803

Zhang, M., Doi, L., Awua, J., Asare, H., & Stenhouse, R. (2023). Challenges and possible
solutions for accessing scholarly literature among medical and nursing professionals and
students in low-and-middle income countries: A systematic review. Nurse Education Today,
123, 105737. https://doi.org/10.1016/j.nedt.2023.105737

Turner, & Turner. (2025). PyPaperRetriever: A Python Tool for Finding and Downloading Scientific Literature. Journal of Open Source Software,
10(113), 8135. https://doi.org/10.21105/joss.08135.

5

https://github.com/JosephIsaacTurner/pypaperretriever
https://github.com/ferru97/PyPaperBot
https://doi.org/10.1001/jamanetworkopen.2024.20496
https://doi.org/10.1001/jamanetworkopen.2024.20496
https://doi.org/10.48550/arXiv.2409.04600
https://doi.org/10.4103/0974-7753.90803
https://doi.org/10.1016/j.nedt.2023.105737
https://doi.org/10.21105/joss.08135

	Summary
	Core Features

	Statement of Need
	Methods
	Object-Oriented Structure
	Command-Line vs. Programmatic Usage


	Similar Tools
	Ethical and legal note on Sci-Hub
	Availability
	Acknowledgements
	References

