
PathSim - A System Simulation Framework
Milan Rother 1

1 Technische Universität Braunschweig, Germany
DOI: 10.21105/joss.08158

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @sea-bass
• @RemDelaporteMathurin

Submitted: 23 April 2025
Published: 13 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PathSim is a flexible, block-based, time-domain dynamical system simulation framework im-
plemented in Python. It enables the modeling and simulation of complex interconnected
systems from their signal flow graphs, similar to MathWorks Simulink (Simulink, Simulation
and Model-Based Design, Version R2025a, 2025) using an object-oriented and decentralized
architecture. This architectural choice distinguishes PathSim by distributing state and compu-
tation across individual Block components, promoting modularity, extensibility, and flexibility.
Core components include user-defined or built-in Block objects encapsulating specific behaviors,
Connection objects defining explicit data flow, and a Simulation object managing time evolu-
tion and coordination. Dynamic blocks possess their own numerical solver instances (engine)
for state integration. PathSim incorporates advanced features: (forward mode) automatic
differentiation for sensitivity analysis or gradient based optimization, discrete event handling for
hybrid systems, automatic system- or block-level linearization, hierarchical modeling through
subsystems, and a comprehensive suite of ODE solvers suitable for stiff problems. It requires
only core scientific Python libraries: NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),
and Matplotlib (Hunter, 2007).

Statement of Need
Modeling and simulating dynamical systems is vital across many disciplines such as control
engineering, chemical process engineering, and mixed signal engineering. Challenges are often
the interplay of multiple coupled subsystems with their distinct dynamics and behaviors that
have to be solved and synchronized concurrently to advance the full system simulation.

PathSim meets the need for an open source simulation framework in the block-diagram
paradigm with minimal dependencies, which integrates seamlessly into the Python ecosystem.
Traditional simulation tools often rely on centralized solvers, proprietary file formats, or compiled
code, which can limit flexibility and extensibility within the Python ecosystem. PathSim’s
decentralized architecture offers distinct advantages: enhanced modularity (blocks are self-
contained units), straight forward extensibility (new blocks integrate naturally without core
modification), and greater flexibility in model composition and analysis. Additionally this
opens up block level solver optimizations, integration with other simulation environments
(co-simulation), and hardware in the loop (HiL) setups through encapsulation within blocks,
as well as integration into machine-learning pipelines.

Specifically PathSim offers:

• Open Source Alternative: An open source alternative to legacy block-diagram system
simulation frameworks.

• Accessible Hybrid System Simulation: Integrates event detection (zero-crossing, sched-
uled) directly into the block-diagram paradigm, simplifying the modeling of systems with
both continuous and discrete dynamics.

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 1

https://orcid.org/0009-0006-5964-6115
https://doi.org/10.21105/joss.08158
https://github.com/openjournals/joss-reviews/issues/8158
https://github.com/milanofthe/pathsim
https://doi.org/10.5281/zenodo.15367933
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/sea-bass
https://github.com/RemDelaporteMathurin
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08158


• Hierarchical Modeling: Subsystem blocks that encapsulate their own blocks and connec-
tions to manage model complexity.

• Gradient-Enabled Simulation: Provides built-in automatic differentiation for sensitivity
analysis and integration with gradient-based optimization or machine learning frameworks.

• Unified Framework for Diverse Dynamics: Offers a wide range of solvers, including
implicit methods (ESDIRK, BDF/GEAR) for stiff systems.

• Extensibility in Python: Leverages the scientific Python ecosystem with minimal de-
pendencies. Its architecture allows straightforward creation and integration of custom
blocks.

Comparison to Existing Tools
MathWorks Simulink (Simulink, Simulation and Model-Based Design, Version R2025a, 2025)
is the de facto industry standard for system modeling in the block diagram paradigm. It’s a
proprietary tool with significant licensing costs. Besides that, other equation based modeling
frameworks such as Modelica (Modelica Standard Library, 1999) with its own model description
language are also used but not as widely adopted.

Several Python tools for simulating dynamical systems have emerged over the years. Standard
ODE solvers like scipy.integrate.solve_ivp (Virtanen et al., 2020) offer robust integration
but lack a structured framework for modeling complex, interconnected systems, or handling
discrete events natively. Users have to manually derive the govering system equations. The
Python Control Systems Library (Fuller et al., 2021) is a popular package for modeling
and optimizing dynamical systems, primarily from the control engineering perspective. The
package tbcontrol (Sandrock, 2019) similarly focuses on control systems. Libraries like
SimuPy (Margolis, 2017b, 2017a) provide a block-based modeling approach similar to PathSim,
leveraging SymPy for symbolic definition and SciPy solvers for integration. Other frameworks
like Collimator (Collimator.ai, 2022) offer graphical interfaces and JAX-based acceleration
but require compilation and introduce dependencies beyond the standard scientific Python
stack. bdsim (Corke, 2020) also provides block diagram simulation, based on Scipy solvers,
with a strong focus on robotics but without event handling.

PathSim differentiates itself by offering a script-based block-diagram interface with a decen-
tralized architecture, native integration of both automatic differentiation and discrete event
handling into the full simulation loop, capable of handling algebraic loops, and a built-in library
of independently implemented and verified ODE solvers (beyond wrapping SciPy). It is fully
open under the MIT License with minimal core dependencies.

Architecture and Design
PathSim employs a decentralized, object-oriented design centered around three primary com-
ponents:

1. Blocks (Block): Represent individual system components or operations. They encap-
sulate their parameters and, if stateful (like Integrator, StateSpace or ODE), manage
their own internal state via a dedicated numerical integration engine (engine) instance.
This contrasts with centralized approaches where a single solver manages all system
states. Blocks define update methods for algebraic computations within a timestep
and step/solve methods for interacting with their engine for state evolution. The
Subsystem class shares the same interface as the base Block and is treated by the main
simulation loop as such. This enables arbitrary encapsulation and nesting.

2. Connections (Connection): Define the explicit data flow pathways between block output
ports and input ports, mirroring the connections in a block diagram.

3. Simulation (Simulation): Coordinates the overall simulation process. It maintains the list
of blocks and connections. It assembles directed graphs of the block dependencies that is

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 2

https://doi.org/10.21105/joss.08158


used to evaluate the algebraic parts of the global system function. Connection.update()

propagates output values to inputs, and Block.update() computes algebraic outputs
based on current inputs and states. Algebraic loop blocks are stored in a separate graph
and resolved iteratively in a second stage. The Simulation object then triggers the step

(for explicit solvers) or solve (for implicit solvers) methods of the blocks’ engines to
advance their internal states. It also manages the event handling system.

PathSim Modeling Flow
PathSim is a script based modeling framework with no built-in graphical user interface.
Therefore it makes sense to start from the block diagram of the system to be modeled. This
section demonstrates PathSim’s modeling and simulation flow on a classical example dynamical
system, the harmonic oscillator.

The figure below shows the mechanical representation of the harmonic oscillator to the left
and its block diagram to the right.

Figure 1: Mechanical representation of the harmonic oscillator to the left and its block diagram to the
right as a schematic viasualization to help with the assembly of the system im PathSim (PathSim is
purely script based)

Translating it to PathSim involves importing the blocks from the block library, instantiating
them with their correct parameters, connecting them with the Connection object, and passing
everything to the Simulation.

from pathsim import Simulation, Connection

from pathsim.blocks import Integrator, Amplifier, Adder, Scope

#initial position and velocity

x0, v0 = 2, 5

#parameters (mass, damping, spring constant)

m, c, k = 0.8, 0.2, 1.5

#blocks that define the system

I1 = Integrator(v0) # integrator for velocity

I2 = Integrator(x0) # integrator for position

A1 = Amplifier(-c/m)

A2 = Amplifier(-k/m)

P1 = Adder()

Sc = Scope(labels=["velocity", "position"])

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 3

https://doi.org/10.21105/joss.08158


blocks = [I1, I2, A1, A2, P1, Sc]

#connections between the blocks

connections = [

Connection(I1, I2, A1, Sc),

Connection(I2, A2, Sc[1]),

Connection(A1, P1),

Connection(A2, P1[1]),

Connection(P1, I1)

]

#create a simulation instance from the blocks and connections

Sim = Simulation(blocks, connections)

#run the simulation for some time

Sim.run(25)

#plot the results directly from the scope

Sc.plot()

#or read them out for postprocessing

time, [vel, pos] = Sc.read()

The Scope block enables fast plotting of the simulation results as well as their retrieval.

Figure 2: Simulation results plotted directly from the PathSim Scope block for the harmonic oscillator
example.

There are more examples of dynamical system simulations present in the PathSim repository
and, with further explanations, in the documentation. The examples cover all features PathSim
has to offer, including hierarchical modeling through subsystems, examples of stiff dynamics
with implicit solver, and discrete dynamics with event handling.

The figures below showcase more dynamical systems and simulation results obtained with
PathSim.

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 4

https://doi.org/10.21105/joss.08158


Figure 3: Visualization of the Van der Pol system built from distinct components as a block diagram
and the simulation results for a very stiff case (𝜇 = 1000) using one of PathSim’s implicit ODE solvers
(ESDIRK43). This example showcases PathSim’s ability to handle stiff systems, it is available in the
repository.

Figure 4: Visualization of the bouncing ball, a classical example for discrete event handling. This example
showcases PathSim’s event handling mechanism for detecting and resolving discrete events (zero-crossings
in this case). It is available in the repository.

References
Collimator.ai. (2022). Collimator.ai core simulation engine and API client. https://pypi.org/

project/pycollimator/.

Corke, P. (2020). Bdsim: Simulate dynamic systems expressed in block diagram form using
Python. https://github.com/petercorke/bdsim.

Fuller, S., Greiner, B., Moore, J., Murray, R., Paassen, R. van, & Yorke, R. (2021). The
Python Control Systems Library (python-control). 2021 60th IEEE Conference on Decision
and Control (CDC), 4875–4881. https://doi.org/10.1109/CDC45484.2021.9683368

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 5

https://pypi.org/project/pycollimator/
https://pypi.org/project/pycollimator/
https://github.com/petercorke/bdsim
https://doi.org/10.1109/CDC45484.2021.9683368
https://doi.org/10.21105/joss.08158


Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Margolis, B. W. l. (2017a). SimuPy: A framework for modeling and simulating dynamical
systems. https://github.com/simupy/simupy.

Margolis, B. W. l. (2017b). SimuPy: A Python framework for modeling and simulating
dynamical systems. Journal of Open Source Software, 2(17), 396. https://doi.org/10.
21105/joss.00396

Modelica standard library. (1999). Modelica Association; https://github.com/modelica/
ModelicaStandardLibrary.

Sandrock, C. (2019). A Python library for solving textbook control problems. https://github.
com/alchemyst/Dynamics-and-Control.

Simulink, Simulation and Model-Based Design, Version R2025a. (2025). [Computer software].
The MathWorks, Inc.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …
SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Rother. (2025). PathSim - A System Simulation Framework. Journal of Open Source Software, 10(109), 8158. https://doi.org/10.21105/joss.08158. 6

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://github.com/simupy/simupy
https://doi.org/10.21105/joss.00396
https://doi.org/10.21105/joss.00396
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/alchemyst/Dynamics-and-Control
https://github.com/alchemyst/Dynamics-and-Control
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.08158

	Summary
	Statement of Need
	Comparison to Existing Tools
	Architecture and Design
	PathSim Modeling Flow
	References

