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Summary

Time-frequency (TF) representations are natural encodings of non-stationary time series, also
termed signals, helping to discern patterns that reveal their time-varying frequency structure
(Flandrin, 1998). The model one usually has in mind when discussing TF representations is a
so-called multi-component signal (MCS), where the latter is thought to be the sum of several
components of individual interest.

mcsm-benchs is an open-source Python library for creating reproducible benchmarks of methods
that aim at extracting information from MCSs.

Benchmark objects can be created by simply passing a series of simulation parameters, a
dictionary of methods and a set of performance metrics, while a SignalBank instance can be
used to standardize comparisons across benchmarks. The SignalBank class can synthesize
several MCSs as objects from a custom Signal class that behave like regular arrays in Python
but also contain information about the components.

Additionally, mcsm-benchs includes a ResultsInterpreter class that can produce human-
readable reports, the functionality of which underpins collaborative benchmarks (Moreau et al.,
2022). These are based on online repositories (see here for an example) and can be periodically
updated by members of the research community, fostering open and collaborative science.
Several examples are given in the documentation, as well as a GitHub repository template that
relies heavily on mcsm-benchs and continuous integration/deployment workflows, in order to
automatize the process of publishing new benchmarks.

Statement of need

MCS processing is an area with a long history, and is still a field of methodological innovation
(Bardenet et al., 2020; Bardenet & Hardy, 2021; Colominas et al., 2020; Ghosh et al., 2022;
Krémé et al., 2020; Legros et al., 2024; Legros & Fourer, 2022; Pascal & Bardenet, 2022a,
2022b). In such a context, systematically comparing existing methods while keeping a record
of how they performed on a predefined set of representative problems, i.e., benchmarking, can
shed light on novel avenues of research and set clear baselines for new approaches. This is
a widely adopted strategy in neighboring fields such as optimization (Bartz-Beielstein et al.,
2020; Hansen et al., 2021; Moreau et al., 2022) and machine learning (Mattson et al., 2020),
yet, to the best of our knowledge, there are no benchmarking tools for MCS processing.

Ideally, researchers would show the superior performance of their novel techniques by 1) selecting
a number of competing approaches to compare with, 2) choosing synthetic or real-world signals
that pose a challenge to the selected methods, 3) contaminating the signals with white or
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colored noise, and 4) comparing the performance of the novel approaches under different
signal-to-noise ratios. There are two problems with this pipeline. First, it is sometimes not
clear which the state-of-the-art methods are. Second, the comparisons are commonly limited
to very few signals selected to show the strengths of the new method.

mcsm-benchs brings a common framework to the table to easily carry out extensive comparisons
between MCS-based approaches in a unified and objective way. It can be used to benchmark
any number of approaches and create clear baselines for new methods that are accessible to
the whole research community.

The toolbox is versatile enough to allow comparisons between many kinds of methods. For
instance, mcsm-benchs was used to compare statistical tests for signal detection (Juan M.
Miramont et al., 2022) and for denoising of synthetic and realistic signals under different
scenarios, such as white noise or even real-world noises (Juan M. Miramont et al., 2024).
As another example, many approaches within MCS processing focus instead on retrieving
individual components and estimating their instantaneous frequencies. These methods can be
easily benchmarked using mcsm-benchs as well (see Juan M. Miramont et al., 2023).

While the aforementioned cases illustrate the most typical applications in MCS processing,
methods are in fact always treated like black boxes by mcsm-benchs. The only constraint
imposed by the software is that the outputs of a method should match the inputs of the
performance metrics given by the user. Thanks to this feature, mcsm-benchs has significant
potential, as it could be used to systematically compare any signal processing algorithm. Large
studies of methods for specific applications can thus be created and kept updated by the signal
processing community using mcsm-benchs, hopefully leading to widely adopted procedures for
evaluating new approaches that are transparent, less time-consuming, and straightforward for
researchers to use.

Finally, in order to ease the adoption of this package by the community, mcsm-benchs also
supports methods coded in Octave/Matlab, so that these can be seamlessly integrated into
Python-based benchmarks.
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