The Journal of Open Source Software

DOI: 10.21105/joss.08175

Software
= Review 7
= Repository &
= Archive 7

Editor: Marcel Stimberg 7
Reviewers:

= Onmy2103

= @tsbinns

Submitted: 20 February 2025
Published: 22 September 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

mcsm-benchs: Benchmarking methods for
multi-component signal processing

1

Juan M. Miramont ® 129, Rémi Bardenet @ !, Pierre Chainais®!, and

Francois Auger ©?

1 Université de Lille, CNRS, Centrale Lille, UMR 9189 Centre de Recherche en Informatique, Signal et
Automatique de Lille (CRIStAL), Lille, France. 2 Nantes Université, Institut de Recherche en Energie
Electrique de Nantes Atlantique (IREENA, UR 4642), Saint-Nazaire, France. 9 Corresponding author

Summary

Time-frequency (TF) representations are natural encodings of non-stationary time series, also
termed signals, helping to discern patterns that reveal their time-varying frequency structure
(Flandrin, 1998). The model one usually has in mind when discussing TF representations is a
so-called multi-component signal (MCS), where the latter is thought to be the sum of several
components of individual interest.

mcsm-benchs is an open-source Python library for creating reproducible benchmarks of methods
that aim at extracting information from MCSs.

Benchmark objects can be created by simply passing a series of simulation parameters, a
dictionary of methods and a set of performance metrics, while a SignalBank instance can be
used to standardize comparisons across benchmarks. The SignalBank class can synthesize
several MCSs as objects from a custom Signal class that behave like regular arrays in Python
but also contain information about the components.

Additionally, mcsm-benchs includes a ResultsInterpreter class that can produce human-
readable reports, the functionality of which underpins collaborative benchmarks (Moreau et al.,
2022). These are based on online repositories (see here for an example) and can be periodically
updated by members of the research community, fostering open and collaborative science.
Several examples are given in the documentation, as well as a GitHub repository template that
relies heavily on mcsm-benchs and continuous integration/deployment workflows, in order to
automatize the process of publishing new benchmarks.

Statement of need

MCS processing is an area with a long history, and is still a field of methodological innovation
(Bardenet et al., 2020; Bardenet & Hardy, 2021; Colominas et al., 2020; Ghosh et al., 2022;
Krémé et al., 2020; Legros et al., 2024; Legros & Fourer, 2022; Pascal & Bardenet, 2022a,
2022b). In such a context, systematically comparing existing methods while keeping a record
of how they performed on a predefined set of representative problems, i.e., benchmarking, can
shed light on novel avenues of research and set clear baselines for new approaches. This is
a widely adopted strategy in neighboring fields such as optimization (Bartz-Beielstein et al.,
2020; Hansen et al., 2021; Moreau et al., 2022) and machine learning (Mattson et al., 2020),
yet, to the best of our knowledge, there are no benchmarking tools for MCS processing.

Ideally, researchers would show the superior performance of their novel techniques by 1) selecting
a number of competing approaches to compare with, 2) choosing synthetic or real-world signals
that pose a challenge to the selected methods, 3) contaminating the signals with white or

Miramont et al. (2025). mcsm-benchs: Benchmarking methods for multi-component signal processing. Journal of Open Source Software, 10(113), 1
8175. https://doi.org/10.21105/joss.08175.


https://orcid.org/0000-0002-3847-7811
https://orcid.org/0000-0002-1094-9493
https://orcid.org/0000-0003-4377-7584
https://orcid.org/0000-0001-9158-1784
https://doi.org/10.21105/joss.08175
https://github.com/openjournals/joss-reviews/issues/8175
https://github.com/jmiramont/mcsm-benchs
https://doi.org/10.5281/zenodo.17122672
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/nmy2103
https://github.com/tsbinns
https://creativecommons.org/licenses/by/4.0/
https://jmiramont.github.io/benchmarks-detection-denoising/results_denoising.html
https://jmiramont.github.io/mcsm-benchs/
https://github.com/jmiramont/collab-benchmark-template
https://doi.org/10.21105/joss.08175

The Journal of Open Source Software

colored noise, and 4) comparing the performance of the novel approaches under different
signal-to-noise ratios. There are two problems with this pipeline. First, it is sometimes not
clear which the state-of-the-art methods are. Second, the comparisons are commonly limited
to very few signals selected to show the strengths of the new method.

mcsm-benchs brings a common framework to the table to easily carry out extensive comparisons
between MCS-based approaches in a unified and objective way. It can be used to benchmark
any number of approaches and create clear baselines for new methods that are accessible to
the whole research community.

The toolbox is versatile enough to allow comparisons between many kinds of methods. For
instance, mcsm-benchs was used to compare statistical tests for signal detection (Juan M.
Miramont et al., 2022) and for denoising of synthetic and realistic signals under different
scenarios, such as white noise or even real-world noises (Juan M. Miramont et al., 2024).
As another example, many approaches within MCS processing focus instead on retrieving
individual components and estimating their instantaneous frequencies. These methods can be
easily benchmarked using mcsm-benchs as well (see Juan M. Miramont et al., 2023).

While the aforementioned cases illustrate the most typical applications in MCS processing,
methods are in fact always treated like black boxes by mcsm-benchs. The only constraint
imposed by the software is that the outputs of a method should match the inputs of the
performance metrics given by the user. Thanks to this feature, mcsm-benchs has significant
potential, as it could be used to systematically compare any signal processing algorithm. Large
studies of methods for specific applications can thus be created and kept updated by the signal
processing community using mcsm-benchs, hopefully leading to widely adopted procedures for
evaluating new approaches that are transparent, less time-consuming, and straightforward for
researchers to use.

Finally, in order to ease the adoption of this package by the community, mcsm-benchs also
supports methods coded in Octave/Matlab, so that these can be seamlessly integrated into
Python-based benchmarks.

Acknowledgements

This work was supported by grant ERC-2019-STG-851866, and French projects ANR20-CHIA-
0002 and ASCETE-ANR19-CE48-0001. JMM would like to thank Guillaume Gautier and Yusuf
Yigit Pilaval for their valuable insight.

References

Bardenet, R., Flamant, J., & Chainais, P. (2020). On the zeros of the spectrogram of
white noise. Applied and Computational Harmonic Analysis, 48(2), 682-705. https:
//doi.org/10.1016/j.acha.2018.09.002

Bardenet, R., & Hardy, A. (2021). Time-frequency transforms of white noises and Gaussian
analytic functions. Applied and Computational Harmonic Analysis, 50, 73-104. https:
//doi.org/10.1016/j.acha.2019.07.003

Bartz-Beielstein, T., Doerr, C., Berg, D. van den, Bossek, J., Chandrasekaran, S., Eftimov,
T., Fischbach, A., Kerschke, P., La Cava, W., Lopez-lbanez, M., & others. (2020).
Benchmarking in optimization: Best practice and open issues. arXiv. https://doi.org/10.
48550/arXiv.2007.03488

Colominas, M. A., Meignen, S., & Pham, D.-H. (2020). Fully adaptive ridge detection
based on STFT phase information. |IEEE Signal Processing Letters, 27, 620—-624. https:
//doi.org/10.1109/Isp.2020.2987166

Miramont et al. (2025). mcsm-benchs: Benchmarking methods for multi-component signal processing. Journal of Open Source Software, 10(113), 2
8175. https://doi.org/10.21105/joss.08175.


https://doi.org/10.1016/j.acha.2018.09.002
https://doi.org/10.1016/j.acha.2018.09.002
https://doi.org/10.1016/j.acha.2019.07.003
https://doi.org/10.1016/j.acha.2019.07.003
https://doi.org/10.48550/arXiv.2007.03488
https://doi.org/10.48550/arXiv.2007.03488
https://doi.org/10.1109/lsp.2020.2987166
https://doi.org/10.1109/lsp.2020.2987166
https://doi.org/10.21105/joss.08175

The Journal of Open Source Software

Flandrin, P. (1998). Time-frequency/time-scale analysis. Academic Press. ISBN: 9780080543031

Ghosh, S., Lin, M., & Sun, D. (2022). Signal analysis via the stochastic geometry of
spectrogram level sets. IEEE Transactions on Signal Processing, 70, 1104-1117. https:
//doi.org/10.1109/tsp.2022.3153596

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., & Brockhoff, D. (2021). COCO: A
platform for comparing continuous optimizers in a black-box setting. Optimization Methods
and Software, 36, 114-144. https://doi.org/10.1080/10556788.2020.1808977

Krémé, A. M., Emiya, V., Chaux, C., & Torresani, B. (2020). Filtering out time-frequency areas
using Gabor multipliers. ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 5790-5794. https://doi.org/10.1109/icassp40776.
2020.9053482

Legros, Q., & Fourer, D. (2022). Time-frequency ridge estimation of multi-component signals
using sparse modeling of signal innovation. https://doi.org/10.48550/arXiv.2212.11343

Legros, Q., Fourer, D., Meignen, S., & Colominas, M. A. (2024). Instantaneous frequency
and amplitude estimation in multicomponent signals using an EM-based algorithm. |EEE
Transactions on Signal Processing, 72, 1130-1140. https://doi.org/10.1109/TSP.2024.
3361713

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson, D., Tang, H.,
Wei, G.-Y., Bailis, P., Bittorf, V., & others. (2020). MLPerf training benchmark. In
Proceedings of Machine Learning and Systems (Vol. 2, pp. 336—-349). https://doi.org/10.
48550/arXiv.1910.01500

Miramont, Juan M., Bardenet, R., Chainais, P., & Auger, F. (2022). A public benchmark for
denoising and detection methods. XXVIlléme Colloque Francophone Du GRETSI, 1-4.

Miramont, Juan M., Bardenet, R., Chainais, P., & Auger, F. (2024). Benchmarking multi-
component signal processing methods in the time-frequency plane. arXiv. https://doi.org/
10.48550/arXiv.2402.08521

Miramont, Juan M., Legros, Q., Fourer, D., & Auger, F. (2023). Benchmarks of multi-
component signal analysis methods. EUSIPCO, 1783-1787. https://doi.org/10.23919/
eusipco58844.2023.10290093

Moreau, T., Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B., Dagréou, M.,
Dupré la Tour, T., Durif, G., F. Dantas, C., Klopfenstein, Q., Larsson, J., Lai, E., Lefort,
T., Malézieux, B., Moufad, B., T. Nguyen, B., Rakotomamonjy, A., Ramzi, Z., .. Vaiter,
S. (2022). Benchopt: Reproducible, efficient and collaborative optimization benchmarks.
NeurlPS. https://doi.org/10.48550/arXiv.2206.13424

Pascal, B., & Bardenet, R. (2022a). Une famille de représentations covariantes de signaux
discrets et son application a la détection de signaux a partir de leurs zéros. XXVIlleme
Colloque Francophone Du GRETSI, 1-4.

Pascal, B., & Bardenet, R. (2022b). A covariant, discrete time-frequency representation tailored
for zero-based signal detection. IEEE Transactions on Signal Processing, 70, 2950-2961.
https://doi.org/10.1109/tsp.2022.3181342

Miramont et al. (2025). mcsm-benchs: Benchmarking methods for multi-component signal processing. Journal of Open Source Software, 10(113), 3
8175. https://doi.org/10.21105/joss.08175.


https://doi.org/10.1109/tsp.2022.3153596
https://doi.org/10.1109/tsp.2022.3153596
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1109/icassp40776.2020.9053482
https://doi.org/10.1109/icassp40776.2020.9053482
https://doi.org/10.48550/arXiv.2212.11343
https://doi.org/10.1109/TSP.2024.3361713
https://doi.org/10.1109/TSP.2024.3361713
https://doi.org/10.48550/arXiv.1910.01500
https://doi.org/10.48550/arXiv.1910.01500
https://doi.org/10.48550/arXiv.2402.08521
https://doi.org/10.48550/arXiv.2402.08521
https://doi.org/10.23919/eusipco58844.2023.10290093
https://doi.org/10.23919/eusipco58844.2023.10290093
https://doi.org/10.48550/arXiv.2206.13424
https://doi.org/10.1109/tsp.2022.3181342
https://doi.org/10.21105/joss.08175

	Summary
	Statement of need
	Acknowledgements
	References

