
Ecos: An accessible and intuitive co-simulation
framework
Lars Ivar Hatledal 1

1 Norwegian University of Science and Technology (NTNU), Department of ICT and Natural Sciences,
Norway

DOI: 10.21105/joss.08182

Software
• Review
• Repository
• Archive

Editor: Evan Spotte-Smith
Reviewers:

• @ElektrikAkar
• @elac-safran

Submitted: 14 April 2025
Published: 06 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Ecos is a cross-platform framework for running co-simulations adhering to the Functional Mock-
up Interface (FMI) standard (Blochwitz et al., 2012); an open standard for model exchange
and co-simulation of dynamic systems. The FMI Standard provides three interface types for
difference aspects of models, namely: FMI for Model Exchange (ME), FMI for Co-simulation
(CS), and FMI for Scheduled execution (Since FMI 3.0). Ecos supports the co-simulation
mode, which is the most widely used interface type. An FMU (Functional Mock-up Unit) is a
self-contained component that implements the FMI standard. It is packaged as a zip archive
containing:

• A shared library for each supported platform, which implements a standardized C interface.
• A modelDescription.xml file, describing the FMU’s capabilities and available variables.
• Optionally, component-specific resources embedded within the archive.

The intention of Ecos is to provide a streamlined way of working with such FMUs, and supports
version 1.0, 2.0 and 3.0 of the standard with respect to co-simulation. In particular, support for
FMI 3.0 (Junghanns et al., 2021) is still missing in many tools, and Ecos aims to help bridge
this gap by providing partial support for this version. In collaboration with interested users,
Ecos aims to gradually expand its support for FMI 3.0, working toward a more complete and
practical implementation of the standard over time. Ecos also supports the System Structure
& Parameterization (SSP) standard (Köhler et al., 2016), which can be used to import systems
of FMUs in a structured and tool-agnostic way. Ecos consists of a Command Line Interface
(CLI), as well as a C++ library, libecos, with interfaces provided in C and Python. The Python
package is available through the PyPI package index as ecospy. The project is structured as
a mono-repo with a major goal of being straightforward to build. This also implies few and
light-weight dependencies.

Some features available with Ecos:

• Support for SSP 1.0.
• Support for FMI 1.0, 2.0 & 3.0 for Co-simulation.
• Built-in plotting capabilities with inline and XML configuration options.
• CSV writer with inline and XML configuration options.
• Scenarios - actions to run at specific events.
• Remoting - allowing models to interact across processes/computers.

In particular, remoting is a key feature of Ecos, allowing model instances to be automatically
distributed across processes on a local machine. Instances may also be distributed across
computers by manually booting a server application and passing their IP address to Ecos.

Hatledal. (2025). Ecos: An accessible and intuitive co-simulation framework. Journal of Open Source Software, 10(110), 8182. https:
//doi.org/10.21105/joss.08182.

1

https://orcid.org/0000-0001-6436-7213
https://doi.org/10.21105/joss.08182
https://github.com/openjournals/joss-reviews/issues/8182
https://github.com/Ecos-platform/ecos
https://doi.org/10.5281/zenodo.15600821
https://espottesmith.github.io
https://orcid.org/0000-0003-1554-197X
https://github.com/ElektrikAkar
https://github.com/elac-safran
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08182
https://doi.org/10.21105/joss.08182


Figure 1: Ecos provides post-simulation plotting facilities.

Figure 1 demonstrates a simulation of a simple mass-spring-damper system with Ecos. The
models are packaged following the SSP standard and subsequently simulated and plotted with
libecos.

Statement of need
While similar tooling exists like FMPy (CATIA Systems, 2017), Vico (Hatledal et al., 2021),
Open Simulation Platform (OSP) (Smogeli et al., 2020) and OMSimulator (Ochel et al.,
2019), Ecos aims to deliver a higher level of flexibility, extensibility and accessibility through
an easy-to-build and consume package. In particular, Ecos acts as a successor to the JVM
based Vico framework, improving on accessibility, usability and performance.

Table 1 compares Ecos with some of the other available tools. While seemingly similar, Ecos
niche is to provide an intuitive high-level C++ API, simple yet powerful Python, C and CLI
interfaces, as well as support for all three versions of FMI for Co-simulation and built-in means
of distributing simulation components across processes, while also keeping build dependencies
to a minimum.

Table 1: Comparison of tools.

Feature FMPy OMSimulator OSP Ecos
Language Python C, Lua, Python C++, C,

Python
C++, C, Python

FMI
Support

FMI 1.0, 2.0, 3.0
(ME, CS)

FMI 2.0, 3.0
(ME, CS)

FMI 1.0, 2.0
CS

FMI 1.0, 2.0, 3.0
CS

Hatledal. (2025). Ecos: An accessible and intuitive co-simulation framework. Journal of Open Source Software, 10(110), 8182. https:
//doi.org/10.21105/joss.08182.

2

https://doi.org/10.21105/joss.08182
https://doi.org/10.21105/joss.08182


Feature FMPy OMSimulator OSP Ecos
Co-
simulation

Yes Yes Yes Yes

Model
Exchange

Yes Yes No No

GUI Basic (Individual
models)

Yes (OMEdit) No No

CLI Yes No Yes Yes
Remoting Yes No Yes Yes
License BSD OSMC-PL MPL MIT

The software is currently being used to support the EU project TWINVEST, where NTNU is a
partner.

Future of Ecos
Ecos currently ships with a capable, but simple Jacobi-type fixed_step orchestration algorithm.
The algorithm can run models in parallel, and individual model may run at different rates.
The API is designed to be extensible, and the goal is to include more advanced orchestration
algorithms. However, pursuing this should be driven by a clear user need. In this respect, users
are encouraged to provide use-cases and sample simulations systems where more advanced
orchestration algorithms are needed.

References

Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M.,
Junghanns, A., Mauss, J., Neumerkel, D., & others. (2012). Functional mockup interface
2.0: The standard for tool independent exchange of simulation models. 9th International
Modelica Conference, 173–184. https://doi.org/10.3384/ecp12076173

CATIA Systems. (2017). FMPy - a Python library to simulate functional mock-up units
(FMUs). In GitHub repository. https://github.com/CATIA-Systems/FMPy; GitHub.

Hatledal, L. I., Chu, Y., Styve, A., & Zhang, H. (2021). Vico: An entity-component-system
based co-simulation framework. Simulation Modelling Practice and Theory, 108, 102243.
https://doi.org/10.1016/j.simpat.2020.102243

Junghanns, A., Gomes, C., Schulze, C., Schuch, K., Pierre, R., Blaesken, M., Zacharias,
I., Pillekeit, A., Wernersson, K., Sommer, T., & others. (2021). The functional mock-
up interface 3.0-new features enabling new applications. Modelica Conferences, 17–26.
https://doi.org/10.3384/ecp2118117

Köhler, J., Heinkel, H.-M., Mai, P., Krasser, J., Deppe, M., & Nagasawa, M. (2016). Modelica-
association-project “system structure and parameterization”–early insights. https://doi.
org/10.3384/ecp1612435

Ochel, L. A., Braun, R., Thiele, B., Asghar, A., Buffoni, L., Eek, M., Fritzson, P., Fritzson,
D., Horkeby, S., Hällquist, R., & others. (2019). OMSimulator-integrated FMI and
TLM-based co-simulation with composite model editing and SSP. Modelica, 157–007.
https://doi.org/10.3384/ecp1915769

Smogeli, Ø. R., Ludvigsen, K. B., Jamt, L., Vik, B., Nordahl, H., Kyllingstad, L. T., Yum, K.
K., & Zhang, H. (2020). Open simulation platform–an open-source project for maritime
system co-simulation. 19th International Conference on Computer and IT Applications in
the Maritime Industries.

Hatledal. (2025). Ecos: An accessible and intuitive co-simulation framework. Journal of Open Source Software, 10(110), 8182. https:
//doi.org/10.21105/joss.08182.

3

https://doi.org/10.3384/ecp12076173
https://github.com/CATIA-Systems/FMPy
https://doi.org/10.1016/j.simpat.2020.102243
https://doi.org/10.3384/ecp2118117
https://doi.org/10.3384/ecp1612435
https://doi.org/10.3384/ecp1612435
https://doi.org/10.3384/ecp1915769
https://doi.org/10.21105/joss.08182
https://doi.org/10.21105/joss.08182

	Summary
	Statement of need
	Table 1: Comparison of tools.

	Future of Ecos
	References

