
dpest: Streamlining Creation of PEST input files for
DSSAT Crop Model Calibration
Luis Vargas-Rojas 1 and Diane R. Wang 1

1 Department of Agronomy, Purdue University, West Lafayette, IN, United States
DOI: 10.21105/joss.08188

Software
• Review
• Repository
• Archive

Editor: Jayaram Hariharan
Reviewers:

• @aleaf
• @julienmalard

Submitted: 07 March 2025
Published: 08 July 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Process-based crop models simulate plant growth and can support crop improvement research
by enacting different “what-if” scenarios. Decision Support System for Agrotechnology Transfer
(DSSAT) is one of the most commonly used crop modeling platforms, containing modules
that can be used to model different species (Jones et al., 2003). To simulate different crop
varieties, DSSAT calibration is needed. This involves adjusting model parameters, which are
values stored in a model input file, to determine which sets of values give rise to simulations
that most closely match measured data from field experiments; these data can include single
timepoint measurements as well as time-series information.

While the DSSAT installation includes Graphical User Interface (GUI) tools specifically designed
for calibration, they are not amenable to time-series data. In contrast, the PEST software
suite for parameter estimation and uncertainty analysis (Doherty, 2015), a command-line
interface (CLI) tool, is a model-independent tool that can calibrate DSSAT models using
not only the end-of-season crop data but also measurements collected within-season. To
carry out model calibration, PEST requires three types of input files: template files (.TPL)
that specify the parameters to calibrate, instruction files (.INS) that contain the guidelines
to extract the model outputs, and the control file (.PST) that includes the specifications to
manage all the calibration settings. Generation of these input files for PEST-based DSSAT
calibration, however, can be a complex and time-consuming process, making it difficult to
scale, for example, across many cultivars or strains.

To address these challenges, we developed dpest, a Python library that streamlines the
generation of PEST input files for calibrating DSSAT; the current version supports DSSAT’s
wheat models. Importantly, using dpest enables researchers to script the entire calibration
process, thereby enhancing the efficiency of the workflow to scale easily across multiple varieties.

Statement of Need
With the adoption of new data collection technologies in agriculture, plant researchers have
been developing methodologies to integrate remote sensing data and crop models to simulate
crop performance and development (Kasampalis et al., 2018). Remote sensing data have
many advantages over traditional data collection methods in crop science. For instance, they
can be collected repeatedly over time without disturbing the plants and at a low cost. Using
these kinds of time-series data can improve the accuracy of crop model calibration. However,
the calibration tools included in the DSSAT installation do not support the use of time-series
data, which limits the potential of remote sensing for model calibration. Researchers can
use PEST-based calibrations for the DSSAT models to address this limitation, but manual
preparation of PEST input files requires expertise in both the PEST software and DSSAT
models, which makes it a complex and time-consuming task. Previous efforts to streamline this
process include an R-based DSSAT-PEST script distributed as supplementary material with
the paper (Ma et al., 2020), which automates PEST file generation but requires manual setup
of configuration files. While libraries like pyEMU (White et al., 2016) enable general-purpose

Vargas-Rojas, & Wang. (2025). dpest: Streamlining Creation of PEST input files for DSSAT Crop Model Calibration. Journal of Open Source
Software, 10(111), 8188. https://doi.org/10.21105/joss.08188.

1

https://orcid.org/0000-0001-8610-9901
https://orcid.org/0000-0002-2290-3257
https://doi.org/10.21105/joss.08188
https://github.com/openjournals/joss-reviews/issues/8188
https://github.com/DS4Ag/dpest
https://doi.org/10.5281/zenodo.15733807
https://jayaramhariharan.com/
https://orcid.org/0000-0002-1343-193X
https://github.com/aleaf
https://github.com/julienmalard
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08188


PEST control file construction, they rely on users to provide all model parameter definitions,
bounds, groupings, and observation data inputs that, for DSSAT models, must be extracted
and formatted from input and output files. The dpest Python library helps overcome these
challenges, allowing crop researchers to integrate time-series data from either remote sensing or
direct measurements to improve PEST-based DSSAT model calibration. Moreover, streamlining
the calibration process using dpest can facilitate the application of DSSAT models to large
populations of crop varieties. Finally, dpest includes model-agnostic utilities for targeted
modification of PEST control files (.PST), reducing the need for full-file reconstruction and
facilitating iterative calibration workflows.

Functionality
The dpest package includes the following modules, each with detailed usage instructions and
examples available in the documentation:

• cul(): Creates PEST template files (.TPL) for DSSAT cultivar parameters. The file is
used for cultivar calibration.

• eco(): Creates PEST template files (.TPL) for DSSAT ecotype parameters. The file is
used for ecotype calibration.

• overview(): Creates PEST instruction files (.INS) for reading observed (measured) values
of key end-of-season crop performance metrics and key phenological observations from the
OVERVIEW.OUT file. The instruction file tells PEST how to extract model-generated
observations from the OVERVIEW.OUT file, compare them with the observations from
the DSSAT A file, and adjust model parameters.

• plantgro(): Creates PEST instruction files (.INS) for reading simulated plant growth
values from the DSSAT PlantGro.OUT file. The .INS file guides PEST in comparing
those simulated values with the time-series data measured and provided in the DSSAT
T file.

• pst(): Generates the main PEST control file (.PST) to guide the entire calibration
process. It integrates the template (.TPL) and instruction (.INS) files, defines calibra-
tion parameters, observation groups, weights, PEST control variables and model run
command.

• uplantgro(): modifies the DSSAT output file (PlantGro.OUT) to prevent PEST errors
when simulated crop maturity occurs before the final measured observation. This ensures
PEST can compare all available time-series data, even when the model predicts maturity
earlier than observed in the field.

• utils: Provides a set of functions for updating target variables on PEST control file
(.PST) without regenerating the full file. This preserves the existing adjustments made
in the file. The utils functions can be used with any model supported by PEST.

Use Cases and Applications
dpest has been used to calibrate DSSAT using data collected from a research experiment carried
out at the International Maize and Wheat Improvement Center (CIMMYT) facilities, where 14
wheat varieties were grown in three different environmental conditions (irrigation, heat and
draught) over two growing seasons. It has enabled the integration of remote sensing data and
other time-series measurements to calibrate the DSSAT CERES wheat model (Vargas-Rojas et
al., 2024).

Acknowledgements
We acknowledge Sheela Katuwal and Rob Malone for their guidance on using PEST. LV-R
was supported by a CONACYT fellowship from the Mexican government. The experimental
data used for testing dpest were collected as part of a research project funded by the Heat and
Drought Wheat Improvement Consortium (HedWIC) under grant #DFs-19-0000000013.

Vargas-Rojas, & Wang. (2025). dpest: Streamlining Creation of PEST input files for DSSAT Crop Model Calibration. Journal of Open Source
Software, 10(111), 8188. https://doi.org/10.21105/joss.08188.

2

https://dpest.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.08188


References
Doherty, J. (2015). Calibration and uncertainty analysis for complex environmental models.

Watermark Numerical Computing. ISBN: 978-0-9943786-0-6

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A.,
Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping
system model. European Journal of Agronomy, 18(3), 235–265. https://doi.org/10.1016/
S1161-0301(02)00107-7

Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G.
(2018). Contribution of remote sensing on crop models: A review. Journal of Imaging,
4(4). https://doi.org/10.3390/jimaging4040052

Ma, H., Malone, R. W., Jiang, T., Yao, N., Chen, S., Song, L., Feng, H., Yu, Q., & He, J.
(2020). Estimating crop genetic parameters for DSSAT with modified PEST software.
European Journal of Agronomy, 115, 126017. https://doi.org/10.1016/j.eja.2020.126017

Vargas-Rojas, L., Wang, D., & Reynolds, M. (2024). How can we streamline wheat model
calibration with remote sensing? In ASA, CSSA, SSSA International Annual Meeting.
https://scisoc.confex.com/scisoc/2024am/meetingapp.cgi/Paper/161215

White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental
model uncertainty analysis. Environmental Modelling & Software, 85, 217–228. https:
//doi.org/10.1016/j.envsoft.2016.08.017

Vargas-Rojas, & Wang. (2025). dpest: Streamlining Creation of PEST input files for DSSAT Crop Model Calibration. Journal of Open Source
Software, 10(111), 8188. https://doi.org/10.21105/joss.08188.

3

https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.3390/jimaging4040052
https://doi.org/10.1016/j.eja.2020.126017
https://scisoc.confex.com/scisoc/2024am/meetingapp.cgi/Paper/161215
https://doi.org/10.1016/j.envsoft.2016.08.017
https://doi.org/10.1016/j.envsoft.2016.08.017
https://doi.org/10.21105/joss.08188

	Summary
	Statement of Need
	Functionality
	Use Cases and Applications
	Acknowledgements
	References

