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Summary

Cosmological simulations model the evolution of dark matter and baryons under the influence of
gravitational and hydrodynamic forces. Beginning at high redshift, they capture the hierarchical
formation of structures, where smaller structures form first and later merge into larger ones.
These simulations incorporate hydrodynamics to evolve the gas and include a number of
subgrid prescriptions for modelling important physical processes, such as star formation. Once
the simulation has concluded, a halo-finding algorithm is used to identify bound structures
(subhalos) within the resulting particle distribution.

Here, we introduce SOAP (Spherical Overdensity & Aperture Processor), a Python package
designed to compute halo and galaxy properties from simulations that have been post-processed
with a halo finder. SOAP takes a subhalo catalogue as input and calculates a wide array of
properties for each object. Its output is compatible with the swiftsimio package (Borrow &
Borrisov, 2020), enabling seamless unit handling. SOAP has already been used to generate halo
catalogues for the FLAMINGO simulation suite (Kugel et al., 2023; Schaye et al., 2023), which
includes the largest cosmological hydrodynamic simulation to date. These catalogues have
been used in more than 20 publications to date.!

Statement of Need

Modern galaxy simulations are often analyzed by a large number of researchers. However, due
to the large volume of data generated, it is often impractical for individual users to compute
the specific properties they require independently. SOAP addresses this challenge by producing
comprehensive catalogues containing a wide range of properties that can be shared across the
community.

Given the substantial volume of data, it is essential for the output to be processed in parallel.
SOAP achieves this using the mpidpy library (Dalcin et al., 2005, 2008, 2011; Dalcin & Fang,
2021). This enables SOAP to scale efficiently across multiple compute nodes. SOAP is also
designed to handle subvolumes of the simulation independently, allowing for large simulations
to be processed sequentially if required. This approach reduces the need for high-memory
resources. The ability to efficiently process subhalos in parallel is a unique feature of SOAP when
compared with other packages for computing galaxy properties (e.g. Dome, 2023; Narayanan
et al., 2023; Pontzen & Tremmel, 2018).

1For a complete list, see https://flamingo.strw.leidenuniv.nl/papers.html
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A large number of halo finders are used by the community to identify bound structures within
simulation outputs. These employ a variety of methods which can result in subhalo catalogues
with significant differences (Forouhar Moreno et al., 2025). Therefore, it is important to be
able to compare the results of various halo finders to help quantify the uncertainty associated
with structure finding. However, along with the different structure identification methods, the
halo finder codes often vary in their implementation of halo/galaxy property calculations and
may even have different definitions (e.g. using inclusive/exclusive bound mass) for the same
property. This can lead to further differences in the resulting catalogues, although in this case it
is not due to the halo finding method itself. SOAP can take input from multiple halo finders and
calculate properties consistently, thereby enabling actual differences between structure-finding
algorithms to be identified. Currently SOAP supports HBT-HERONS (Forouhar Moreno et al.,
2025; Han et al., 2018), SubFind (Springel et al., 2001), VELOCIraptor (Elahi et al., 2019),
and ROCKSTAR (Behroozi et al., 2013). Adding a new halo finder requires a script to convert
the subhalo catalogue into the standard format used by SOAP; no other code changes are
necessary.

The most common definition of a halo is based on spherical overdensities (SO): regions of the
universe which have a much larger density than the average. The overdensity of a region is
based on all the particles within it, whether bound or unbound, and is therefore not always
output by halo finders. SOAP determines spherical overdensity radii by constructing expanding
spheres until the target density limit is reached. It then calculates the properties of each halo
using all the particles within its SO radius. SOAP also calculates properties for several other
definitions of a halo: subhalo properties (using all particles bound to a subhalo), fixed physical
projected apertures (using all bound particles within a projected radius), and two types of fixed
physical apertures (using all/bound particles within a sphere of the same radius for all objects).
These various types give users the freedom to select the most appropriate definition for their
scientific use case e.g. the type of observational data they are comparing with.

Overview of Features

= SOAP can currently calculate over 250 halo and galaxy properties. Users can easily add
new properties to tailor the tool to their specific scientific needs. When combined with
the four different halo definitions, this makes SOAP exceptionally versatile.

= SOAP is compatible with both dark matter-only (DMO) and full hydrodynamic simulations.
For DMO runs, any properties which are irrelevant (e.g. gas mass) are automatically
excluded, requiring no changes to the parameter file.

= SOAP makes it easy to enable or disable specific halo definitions and properties using the
SOAP parameter file. This is possible because all properties are lazily defined within the
code and are only computed if required. Additionally, if certain objects require further
analysis, SOAP can be run on a subset of subhalos.

= Properties can be assigned filters so that they are only calculated for objects that meet
certain criteria (e.g. only calculate the halo concentration if a subhalo has a minimum
number of bound particles of a particular type). This improves the runtime of SOAP and
also reduces the data volume of the final output catalogues.

= SOAP was originally written to run on Swift simulation snapshots (Schaller et al., 2024),
utilizing their metadata for unit handling and spatial sorting to enable efficient loading
of the data. However, it has also been used to create halo catalogues from the EAGLE
simulation (Schaye et al., 2015) snapshots (which use a modified GADGET format,
Springel, 2005). Supporting additional snapshot formats requires a conversion script to
be written.

= The output is saved as an HDF5 file which is spatially sorted, enabling quick loading of
simulation subvolumes for analysis without requiring the entire dataset.

= The catalogues can be read with the swiftsimio package (Borrow & Borrisov, 2020),
which provides unit conversion (including handling comoving versus physical coordinates)
and a number of visualization tools. All datasets are output in units that are h-free.
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= When provided with a parameter file, SOAP can automatically generate a corresponding
PDF document with a detailed description of all the output properties. This ensures
that the documentation of the generated catalogues (e.g., the property names, units,
compression level, etc.) always reflects the specific setup of the current SOAP run.
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