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Summary
Stochastic dominance plays a key role in decision-making under uncertainty and quantitative
finance. It helps evaluate whether one investment, policy, or strategy is better than others in
uncertain conditions. It provides a mathematically rigorous method often used in optimization
to maximize returns or minimize risk. See Ogryczak & Ruszczyński (2002), Dentcheva &
Ruszczyński (2003), Kuosmanen (2004), Post & Kopa (2017), Kopa et al. (2023), Maggioni
& Pflug (2016), Maggioni & Pflug (2019), Consigli et al. (2023), and Pichler (2024) for an
extensive body of research on the applicability of stochastic dominance.

Statement of need
Despite being a crucial tool, (higher-order) stochastic dominance involves infinitely many
constraints, making it computationally intractable in practice. Our recent research Lakshmanan
et al. (2025) addresses this challenge by theoretically reducing the infinite constraints to a
finite number. However, no concrete, user-friendly implementation of (higher-order) stochastic
dominance has been developed. Additionally, the existing prominent theoretical algorithms only
discuss stochastic orders two and three, but not higher orders. Moreover, both, the discussion
and implementation of non-integer orders, are absent.

To address this gap, we present StochasticDominance.jl, an open-source Julia package tailored
for verification and optimization under higher-order stochastic dominance constraints.

Main features of the package
Technical highlights. The StochasticDominance.jl package offers robust functions for verifying
higher-order stochastic dominance constraints between two random variables. It supports
two primary objective functions by maximizing expected returns and minimizing higher-order
risk measures to achieve the optimal asset allocation while satisfying higher-order stochastic
dominance constraints. The package’s optimization framework is built around Newton’s
method, which efficiently handles the non-linear constraints. To enhance efficiency, we first
employ Particle Swarm Optimization (PSO), which approximates the solution over a set
number of iterations. In our previous work, Lakshmanan et al. (2025) initially impose two fixed
higher-order stochastic dominance constraints and dynamically introduce additional constraints
to ensure dominance. To simplify the process and align with a black-box approach, this package
uses these constraints with additional theoretical backing, eliminating the need for dynamic
adjustments. Below, we provide a concise overview of its key functions.

1. verify_dominance: This function checks whether the given benchmark asset, represented
as the random variable 𝑋, and the weighted portfolio asset, represented as the random
variable 𝑌, exhibit a dominance relationship for the specified stochastic order.
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2. optimize_max_return_SD: This function determines the optimal asset allocation that
maximizes expected returns for a given stochastic order (SDorder).

3. optimize_min_riskreturn_SD: This function determines the optimal asset allocation by
minimizing higher-order risk measures for a given stochastic order (SDorder) while also
indicating whether dominance is achieved. Further implementation details and various
examples are available in the package’s documentation.

Example: verification and portfolio optimization
The first example demonstrates how to use the verify_dominance function to check stochastic
dominance of a specified order.

julia> using StochasticDominance # Load the package

julia> Y = [3, 5, 7, 9, 11] # Random variable Y

julia> p_Y = [0.15, 0.25, 0.30, 0.20, 0.10] # Probabilities associated with Y

julia> X = [2, 4, 6, 8, 10] # Random variable X

julia> p_X = [0.10, 0.30, 0.30, 0.20, 0.10] # Probabilities associated with X

Next, define the stochastic order and execute the function as shown below

julia> SDorder = 2

julia> verify_dominance(Y, X, SDorder; p_Y, p_X)

Y dominates X in stochastic order 2

true

This function checks whether 𝑌 stochastically dominates 𝑋 of order SDorder.

Optimization: maximize expected return
Next, we demonstrate how to find the optimal allocation that maximizes the expected return
of the portfolios of interest while satisfying stochastic dominance of a given order. See tutorials
for a comprehensive technical explanation.

The data.csv file is located in the /test folder of the code repository.

julia> using CSV, Dates, DataFrames

julia> data = CSV.read("data.csv", DataFrame)

julia> ξ = Matrix(select(data, Not(:Date)))'

julia> d, n = size(xi) # (d=5 assets and n=22 scenarios)

julia> τ = fill(1 / d, d) # Equal weights

julia> ξ_0 = vec(τ' * xi) # Define Benchmark

Use the following function to compute the optimal allocation (objective: maximize expected
return):

julia> SDorder = 4;

julia> x_opt, t_opt = optimize_max_return_SD(

ξ,

ξ_0,

SDorder;

p_ξ = fill(1 / n, n), # Uniform probability

p_ξ_0 = fill(1 / n, n), # Uniform probability

plot=true,

)

From x_opt, we obtain the optimal asset allocation. Enabling plot=true generates graphical
representations summarizing key insights concisely.
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Figure 1: Optimal asset allocation (SD order 4.0). The chart illustrates the proportion of different assets
in an optimized portfolio. The maximized expected return is 0.304%, compared to a benchmark return
of 0.125%.

If no portfolio allocation satisfies the stochastic dominance constraint of the given order, the
algorithm stops and provides the necessary information.

Optimization: minimizing higher-order risk measures
Next, we demonstrate how to determine the optimal allocation that minimizes higher-order risk
measures while ensuring stochastic dominance of a given order for the portfolios of interest.
See tutorials for a detailed technical explanation.

Use the following function to compute the optimal allocation (objective: minimizing higher-order
risk measure):

julia> SDorder = 4.7;

julia> x_opt, q_opt, t_opt = optimize_min_riskreturn_SD(

ξ,

ξ_0,

SDorder;

p_ξ = fill(1 / n, n), # Uniform probability

p_ξ_0 = fill(1 / n, n), # Uniform probability

β = 0.5, # Risk parameter

r = 2.0, # Order of the risk measure

plot=true,

)

From q_opt, we derive the value of optimal parameter that satisfies the risk measure for the
given portfolio. It is important to note that the objective itself is an optimization problem.
However, our algorithm is designed to compute both simultaneously in a single execution.
Additionally, the algorithm supports non-integer stochastic dominance orders. This feature is
not restricted to this single setup but is available across all functions.

Figure 2: Optimal asset allocation (SD order 4.7). The pie chart illustrates the distribution of assets in
the optimized portfolio. The optimal coherent risk-return balance results in a portfolio return of 0.97%,
compared to a benchmark return of 1.167%.

Lakshmanan, & Pichler. (2025). StochasticDominance.jl: A Julia Package for Higher Order Stochastic Dominance. Journal of Open Source
Software, 10(110), 8255. https://doi.org/10.21105/joss.08255.

3

https://rajmadan96.github.io/StochasticDominance.jl/dev/tutorial/tutorial4/
https://doi.org/10.21105/joss.08255


References
Consigli, G., Dentcheva, D., Maggioni, F., & Micheli, G. (2023). Asset liability management

under sequential stochastic dominance constraints. Optimization Online. https://doi.org/
10.48550/arXiv.2505.16486

Dentcheva, D., & Ruszczyński, A. (2003). Optimization with stochastic dominance con-
straints. SIAM Journal on Optimization, 14(2), 548–566. https://doi.org/10.1137/
S1052623402420528

Kopa, M., Moriggia, V., & Vitali, S. (2023). Multistage stochastic dominance: An application
to pension fund management. Annals of Operations Research, 1–21. https://doi.org/10.
1007/s10479-023-05658-y

Kuosmanen, T. (2004). Efficient diversification according to stochastic dominance criteria.
Management Science, 50(10), 1390–1406. https://doi.org/10.1287/mnsc.1040.0284

Lakshmanan, R., Pichler, A., & Kopa, M. (2025). Higher-order stochastic dominance con-
straints in optimization. arXiv Preprint arXiv:2501.14565. https://doi.org/10.48550/arXiv.
2501.14565

Maggioni, F., & Pflug, G. Ch. (2016). Bounds and approximations for multistage stochastic
programs. SIAM Journal on Optimization, 26(1), 831–855. https://doi.org/10.1137/
140971889

Maggioni, F., & Pflug, G. Ch. (2019). Guaranteed bounds for general nondiscrete multistage
risk-averse stochastic optimization programs. SIAM Journal on Optimization, 29(1),
454–483. https://doi.org/10.1137/17M1140601

Ogryczak, Wl., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-
risk models. SIAM Journal on Optimization, 13(1), 60–78. https://doi.org/10.1137/
S1052623400375075

Pichler, A. (2024). Connection between higher order measures of risk and stochastic
dominance. Computational Management Science, 21(2), 41. https://doi.org/10.1007/
s10287-024-00523-0

Post, T., & Kopa, M. (2017). Portfolio choice based on third-degree stochastic dominance.
Management Science, 63(10), 3381–3392. https://doi.org/10.1287/mnsc.2016.2506

Lakshmanan, & Pichler. (2025). StochasticDominance.jl: A Julia Package for Higher Order Stochastic Dominance. Journal of Open Source
Software, 10(110), 8255. https://doi.org/10.21105/joss.08255.

4

https://doi.org/10.48550/arXiv.2505.16486
https://doi.org/10.48550/arXiv.2505.16486
https://doi.org/10.1137/S1052623402420528
https://doi.org/10.1137/S1052623402420528
https://doi.org/10.1007/s10479-023-05658-y
https://doi.org/10.1007/s10479-023-05658-y
https://doi.org/10.1287/mnsc.1040.0284
https://doi.org/10.48550/arXiv.2501.14565
https://doi.org/10.48550/arXiv.2501.14565
https://doi.org/10.1137/140971889
https://doi.org/10.1137/140971889
https://doi.org/10.1137/17M1140601
https://doi.org/10.1137/S1052623400375075
https://doi.org/10.1137/S1052623400375075
https://doi.org/10.1007/s10287-024-00523-0
https://doi.org/10.1007/s10287-024-00523-0
https://doi.org/10.1287/mnsc.2016.2506
https://doi.org/10.21105/joss.08255

	Summary
	Statement of need
	Main features of the package
	Example: verification and portfolio optimization
	Optimization: maximize expected return
	Optimization: minimizing higher-order risk measures

	References

