
pyScienceMode: an Open-Source Python Package to
control electro-stimulator through the Hasomed’s
science mode protocol
Kevin Co 1, Amedeo Ceglia 2, and Mickael Begon 1,2

1 School of Kinesiology and Human Kinetics, University of Montreal, Montreal, QC, Canada 2 Institute
of Biomedical Engineering, Faculty of Medicine, University of Montreal, Canada

DOI: 10.21105/joss.08259

Software
• Review
• Repository
• Archive

Editor: Stefan Appelhoff
Reviewers:

• @efeanilaksoz
• @olilecompte

Submitted: 31 March 2025
Published: 11 July 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pyScienceMode is an open-source Python package that simplifies advanced and customizable
functional electrical stimulation (FES) protocols and offers straightforward integration into
research pipelines. The package supports the Rehastim2 and the P24 stimulator devices
(Hasomed Inc., Magdeburg, Germany), enabling the creation of customized stimulation
protocols by allowing the user to control key stimulation parameters such as frequency,
pulse intensity, pulse width, and pulse train duration. Additionally, pyScienceMode supports
the combined use of the MOTOmed rehabilitation bike (Reck-Technik GmbH & Co. KG,
Betzenweiler, Germany) and the Rehastim2 stimulator, allowing pedal angle–based stimulation
control (Figure 1), as well as direct adjustment of the bike’s speed and resistance. Furthermore,
pyScienceMode is designed to work with a variety of experimental tools including encoders,
electromyography sensors, and force plates making it easy to build new stimulation strategies
and control approach for research. By enabling an interface for multiple devices, this package
helps researchers flexibly to implement and customize FES protocols for a range of clinical or
experimental applications.

Statement of Need
To enhance FES rehabilitation, it is essential to provide optimized and personalized stimulation
for both the patient and the performed task. Advanced control technology is needed to deliver
new stimulation protocols (Ibitoye et al., 2016; Rouse et al., 2019) that can enhance motion
(Molazadeh et al., 2021) or increase muscle force production (Doll et al., 2018). However, most
commercially available electrical stimulators lack flexible device control, and customization is
often restricted to manufacturer-provided interfaces, limiting real-time adaptation to experimen-
tal conditions. Hasomed’s stimulators are widely used in research because their ScienceMode
API facilitates advanced stimulation customization. Building on this API, pyScienceMode

was developed to provide full and intuitive control of stimulator devices through the Python
programming language. Furthermore, the package can be updated to integrate any new
stimulation device that provides an API, ensuring ongoing adaptability and innovation in FES
research. This capability is essential for testing new rehabilitation protocols and to gain a
deeper understanding of the underlying mechanisms of FES.

Although similar packages exist, including a LabVIEW-based interface for the Rehastim2
device (RaviChandran et al., 2022) and a C library for the P24 stimulator (https://github.
com/ScienceMode/ScienceMode4_c_library),the development of pyScienceMode in Python is
particularly beneficial for fast prototyping, given Python’s free and widely adopted programming
language. pyScienceMode is the first open-source package enabling the customization of stim-
ulation patterns for the Rehastim2 stimulator in Python. The P24 stimulator control was also

Co et al. (2025). pyScienceMode: an Open-Source Python Package to control electro-stimulator through the Hasomed’s science mode protocol.
Journal of Open Source Software, 10(111), 8259. https://doi.org/10.21105/joss.08259.

1

https://orcid.org/0009-0009-0248-3548
https://orcid.org/0000-0002-7854-9410
https://orcid.org/0000-0002-4107-9160
https://doi.org/10.21105/joss.08259
https://github.com/openjournals/joss-reviews/issues/8259
https://github.com/s2mLab/pyScienceMode
https://doi.org/10.5281/zenodo.15854179
https://stefanappelhoff.com/
https://orcid.org/0000-0001-8002-0877
https://github.com/efeanilaksoz
https://github.com/olilecompte
https://creativecommons.org/licenses/by/4.0/
https://github.com/ScienceMode/ScienceMode4_c_library
https://github.com/ScienceMode/ScienceMode4_c_library
https://doi.org/10.21105/joss.08259

included to the package (based on https://github.com/ScienceMode/ScienceMode4_python_
wrapper) to provide a unified interface and a user-friendly coding environment, accessible from
a simple installation procedure. It can also integrate other sensors and devices that have their
own libraries via multiprocessing (example below). This will enable the scientific community
to control the FES for different tasks and goals, for instance triggered onset/offset for the
drop foot correction and cycling events. The package supports customization of stimulation
parameters (e.g., doublets, triplets, ramp modifications) to address challenges such as muscle
fatigue, pain reduction, and motion smoothness. By unifying these advanced controls in a
single platform, pyScienceMode enables reproducible and adaptable FES interventions that
help researchers to pursue their challenging research and to design innovative rehabilitation
strategies.

Features
The main pyScienceMode features are:

• Stimulator interfaces: Allow for switching between stimulators easily
• Acks: Retrieve the device logs for debugging
• Channel(s) configuration: Enables the configuration of each stimulator channel and

the customization of the stimulation’s parameters (frequency, duration and intensity).
• Motomed: real-time communication between the computer and Motomed.

A Stimulation example: Electro stimulation pipeline
This example shows how to combine the pyScienceMode package with another library
Biosiglive (Ceglia et al., 2023) to control the Rehastim 2 stimulator for a drop foot
correction on an instrumented treadmill (left images in Figure1).

import numpy as np

from biosiglive.interfaces.vicon_interface import ViconClient

from biosiglive.processing.data_processing import RealTimeProcessing

from biosiglive.gui.plot import LivePlot

from time import sleep, time

from pyScienceMode2 import Stimulator as St

from pyScienceMode2 import Channel as Ch

import multiprocessing as mp

def stream(foot_strike):

vicon_interface = ViconClient(init_now=True)

vicon_interface.add_device("Treadmill",

"generic_device",

rate=2000,

system_rate=100)

vicon_interface.devices[-1].set_process_method(RealTimeProcessing().get_peaks)

nb_min_frame = vicon_interface.devices[-1].rate * 10

time_to_sleep = 1 / vicon_interface.devices[-1].system_rate

count = 0

force_z, force_z_process = [], []

is_one = [False, False]

while True:

tic = time()

vicon_interface.get_frame()

data = vicon_interface.get_device_data(device_name="Treadmill")

force_z_tmp = data[0][[2, 8], :]

Co et al. (2025). pyScienceMode: an Open-Source Python Package to control electro-stimulator through the Hasomed’s science mode protocol.
Journal of Open Source Software, 10(111), 8259. https://doi.org/10.21105/joss.08259.

2

https://github.com/ScienceMode/ScienceMode4_python_wrapper
https://github.com/ScienceMode/ScienceMode4_python_wrapper
https://doi.org/10.21105/joss.08259

(cadence,

force_z_process,

force_z,

is_one) = vicon_interface.devices[0].process_method(

new_sample=force_z_tmp,

signal=force_z,

signal_proc=force_z_process,

threshold=0.2,

nb_min_frame=nb_min_frame,

is_one=is_one,

min_peaks_interval=1300)

if np.count_nonzero(force_z_process[:, -20:]):

print("set")

foot_strike.set()

count += 1

loop_time = time() - tic

real_time_to_sleep = time_to_sleep - loop_time

if real_time_to_sleep > 0:

sleep(time_to_sleep - loop_time)

def stim(foot_strike, stimulation_delay, stimulation_duration):

list_channels = []

Channel creation

channel_1 = Ch.Channel("Single",

no_channel=1,

amplitude=50,

pulse_width=100,

stimulation_interval=33,

name="Soleus")

list_channels.append(channel_1)

stimulator = St.Stimulator(list_channels, "COM34")

count = 0

while True:

foot_strike.wait()

sleep(stimulation_delay * 0.001)

stimulator.start_stimulation(stimulation_duration)

print("stim_started")

foot_strike.clear()

if __name__ == "__main__":

stimulation_delay = 10 # ms

stimulation_duration = 0.33 # s

foot_strike = mp.Event()

stim_proc = mp.Process(name="stim",

target=stim,

args=(foot_strike,

stimulation_delay,

stimulation_duration))

stream_proc = mp.Process(name="stream", target=stream, args=(foot_strike,))

stim_proc.start()

stream_proc.start()

stim_proc.join()

stream_proc.join()

Co et al. (2025). pyScienceMode: an Open-Source Python Package to control electro-stimulator through the Hasomed’s science mode protocol.
Journal of Open Source Software, 10(111), 8259. https://doi.org/10.21105/joss.08259.

3

https://doi.org/10.21105/joss.08259

Figure 1: Figure 1

Figure 1: FES for foot drop correction on a treadmill (left) and arm cycling on a MOTOmed
(right). The left panel shows the left foot ground reaction force (green) and the stimulation
of the left soleus muscle (blue). The right panel displays the crank angle (green) along with
the stimulation of the biceps and anterior deltoid (blue) and the triceps and posterior deltoid
(orange).

Acknowledgements
The software development was supported by the “Ingénierie de technologies interactives en
réadaptation” group (INTER) #160 OptiStim.

A special thanks to Arsene Baert and Benjamin Faresin for their contribution to the package
development and documentation writing.

References
Ceglia, A., Verdugo, F., & Begon, M. (2023). Biosiglive: An open-source python package

for real-time biosignal processing. Journal of Open Source Software, 8(83), 5091. https:
//doi.org/10.21105/joss.05091

Doll, B. D., Kirsch, N. A., Bao, X., Dicianno, B. E., & Sharma, N. (2018). Dynamic
optimization of stimulation frequency to reduce isometric muscle fatigue using a modified
hill-huxley model. Muscle & Nerve, 57 (4), 634–641. https://doi.org/10.1002/mus.25777

Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., & Davis, G. M. (2016).
Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal
cord injury: A systematic review. PloS One, 11(2), e0149024. https://doi.org/10.1371/
journal.pone.0149024

Co et al. (2025). pyScienceMode: an Open-Source Python Package to control electro-stimulator through the Hasomed’s science mode protocol.
Journal of Open Source Software, 10(111), 8259. https://doi.org/10.21105/joss.08259.

4

https://doi.org/10.21105/joss.05091
https://doi.org/10.21105/joss.05091
https://doi.org/10.1002/mus.25777
https://doi.org/10.1371/journal.pone.0149024
https://doi.org/10.1371/journal.pone.0149024
https://doi.org/10.21105/joss.08259

Molazadeh, V., Zhang, Q., Bao, X., Dicianno, B. E., & Sharma, N. (2021). Shared control of a
powered exoskeleton and functional electrical stimulation using iterative learning. Frontiers
in Robotics and AI, 8, 711388. https://doi.org/10.3389/frobt.2021.711388

RaviChandran, N., Aw, K., & McDaid, A. (2022). A LabVIEW interface for RehaStim 2.
https://doi.org/10.36227/techrxiv.21302865.v1

Rouse, C. A., Downey, R. J., Gregory, C. M., Cousin, C. A., Duenas, V. H., & Dixon, W. E.
(2019). FES cycling in stroke: Novel closed-loop algorithm accommodates differences in
functional impairments. IEEE Transactions on Biomedical Engineering, 67(3), 738–749.
https://doi.org/10.1109/TBME.2019.2920346

Co et al. (2025). pyScienceMode: an Open-Source Python Package to control electro-stimulator through the Hasomed’s science mode protocol.
Journal of Open Source Software, 10(111), 8259. https://doi.org/10.21105/joss.08259.

5

https://doi.org/10.3389/frobt.2021.711388
https://doi.org/10.36227/techrxiv.21302865.v1
https://doi.org/10.1109/TBME.2019.2920346
https://doi.org/10.21105/joss.08259

	Summary
	Statement of Need
	Features
	A Stimulation example: Electro stimulation pipeline

	Acknowledgements
	References

