
DiRe - JAX: A JAX based Dimensionality Reduction
Algorithm for Large-scale Data

Alexander Kolpakov 1*¶ and Igor Rivin 2*

1 University of Austin, Austin TX, USA; akolpakov@uaustin.org 2 Temple University, Philadelphia PA,
USA; rivin@temple.edu ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.08264

Software
• Review
• Repository
• Archive

Editor: Neea Rusch
Reviewers:

• @Treys925
• @crhea93

Submitted: 21 May 2025
Published: 09 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
DiRe - JAX is a new dimensionality reduction toolkit designed to address some of the
challenges faced by traditional methods like UMAP and tSNE, such as loss of global structure
and computational efficiency. Built on the JAX framework, DiRe leverages modern hardware
acceleration to provide an efficient, scalable, and interpretable solution for visualizing complex
data structures and for quantitative analysis of lower-dimensional embeddings. The toolkit
shows considerable promise in preserving both local and global structures within the data as
compared to state-of-the-art UMAP and tSNE implementations. This makes it suitable for a
wide range of applications in machine learning, bioinformatics, and data science.

Statement of need
Traditional dimensionality reduction techniques such as UMAP and tSNE are widely used
for visualizing high-dimensional data in lower-dimensional spaces, usually 2D and sometimes
3D. Other uses include dimensionality reduction to other, possibly higher and thus non-visual
dimensions, for the subsequent use of classifiers such as SVMs.

However, these methods often struggle with scalability, interpretability, and preservation of
global data structures. For example, while fast and scalable, UMAP may overemphasize local
structures at the expense of global data relationships (Chari & Pachter, 2023). And tSNE,
while known for producing high-quality visualizations, may be computationally expensive and
sensitive to hyperparameter tuning (Kobak & Berens, 2019).

DiRe-JAX addresses these challenges by offering a scalable solution that balances the preser-
vation of both local and global structures. Leveraging the JAX framework allows DiRe-JAX
to efficiently handle large datasets by utilizing GPU/TPU acceleration, making it signifi-
cantly faster than CPU-based implementations without compromising on the quality of the
embeddings.

DiRe-JAX also includes a wealth of metrics for analyzing embedding quality and for hyper-
parameter tuning. Given its runtime efficiency, tasks such as grid-search hyperparameter
optimization become feasible even in low-cost environments like Google Colab.

This makes DiRe-JAX an essential toolkit for researchers and practitioners working with
complex, high-dimensional data.

Benchmarks
A few benchmark below provide some visuals regarding the global structure changes or
preservation by various methods, such as:

Kolpakov, & Rivin. (2025). DiRe - JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data. Journal of Open Source Software,
10(110), 8264. https://doi.org/10.21105/joss.08264.

1

https://orcid.org/0000-0002-6764-8894
https://orcid.org/0000-0001-9302-2169
https://doi.org/10.21105/joss.08264
https://github.com/openjournals/joss-reviews/issues/8264
https://github.com/sashakolpakov/dire-jax
https://doi.org/10.5281/zenodo.15611800
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/Treys925
https://github.com/crhea93
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08264

Dataset: Disk Uniform

Disk DiRe–JAX embedding Disk tSNE embedding

Disk cuML UMAP embedding Disk UMAP embedding

Dataset: Two Half–Moons

Moons DiRe–JAX embedding Moons tSNE embedding

Moons cuML UMAP embedding Moons UMAP embedding

Dataset: Levine 32

Levine 32 DiRe–JAX embedding Levine 32 tSNE embedding

Kolpakov, & Rivin. (2025). DiRe - JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data. Journal of Open Source Software,
10(110), 8264. https://doi.org/10.21105/joss.08264.

2

https://doi.org/10.21105/joss.08264

Levine 32 cuML UMAP embedding Levine 32 UMAP embedding

Main methods
The main class of DiRe-JAX is DiRe. Let 𝑋 ⊂ ℝ𝑛 be the input data realized as a NumPy
array. Then, DiRe performs the following main steps:

1. Capturing dataset topology: Create the kNN graph of 𝑋, say Γ, for a given number of
neighbors 𝑘 (n_neighbors) by calling make_knn_adjacency. This step uses a JAX kernel
specifically developed by the authors to perform the computation on CPU, GPU, or TPU
settings. Other libraries like FAISS (Douze et al., 2024) may also be used, although they
do not provide the same hardware universality.

2. Initial dimension reduction: Produce 𝑌 ⊂ ℝ𝑑, the initial embedding of 𝑋, with 𝑑 ≪ 𝑛
(usually 𝑑 = 2 or 3) given by the dimension parameter, using one of the available
embedding methods: random (random projections from the Johnson–Lindenstrauss
Lemma), spectral (using the kNN graph Γ to construct the weighted Laplacian,
optionally applying a similarity kernel), or pca (classical or kernel-based).

3. Layout optimization: Call do_layout to adjust the lower-dimensional embedding 𝑌 to
conform to the similarity structure of the higher-dimensional data 𝑋. This is done via
a force-directed layout where the role of “forces” is played by probability kernels (the
distributions can be adjusted via parameters min_dist and spread).

The initial embedding is stored in self.init_embedding, while the optimized layout is stored
in self.layout. Both can be accessed after the main method fit_transform is called, for
detailed comparison and analysis.

Random Projection embedding
This embedding is based on the following classical Johnson–Lindenstrauss Lemma (Johnson &
Lindenstrauss, 1984):

Johnson–Lindenstrauss Lemma (Probabilistic Form)

Given 0 < 𝜖 < 1 and an integer 𝑛, let 𝑋 be a set of 𝑛 points in ℝ𝑑. For a
random linear map 𝑓 ∶ ℝ𝑑 → ℝ𝑘 where 𝑘 = 𝑂(log𝑛

𝜖2), with high probability, for
all 𝑢, 𝑣 ∈ 𝑋:

(1 − 𝜖)‖𝑢 − 𝑣‖2 ≤ ‖𝑓(𝑢) − 𝑓(𝑣)‖2 ≤ (1 + 𝜖)‖𝑢 − 𝑣‖2.

The value

dist(𝑓) = ‖𝑓(𝑢) − 𝑓(𝑣)‖
‖𝑢 − 𝑣‖

is called the distortion of 𝑓, and is expected to be close to 1.0 for a high-quality
embedding.

Kolpakov, & Rivin. (2025). DiRe - JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data. Journal of Open Source Software,
10(110), 8264. https://doi.org/10.21105/joss.08264.

3

https://doi.org/10.21105/joss.08264

Random projections are simple and computationally inexpensive, but can suffer from cluttered
outputs when 𝑘 ≪ 𝑑 due to variance reduction in the projected data.

Principal Component Analysis embedding
PCA seeks to preserve as much dataset variance as possible by projecting onto the top 𝑘
singular vectors. Assume 𝑋 is column-centered, with covariance matrix Cov(𝑋) = 1

𝑛−1𝑋
𝑇𝑋.

Compute the singular value decomposition:

𝑋 = 𝑈Σ𝑊𝑇,

and truncate to the top 𝑘 singular values Σ𝑘 and vectors 𝑊𝑘. The rank-𝑘 approximation is:

𝑋 = 𝑈𝑘Σ𝑘𝑊𝑇
𝑘 ,

and the PCA embedding is:

𝑋𝑘 = 𝑋𝑊𝑘.

Under mild conditions on the spectrum, the bottleneck distance between persistence diagrams
of 𝑋 and 𝑋𝑘 satisfies (Chazal et al., 2014):

𝑑𝑏(𝐷(𝑋),𝐷(𝑋𝑘)) ≤ ‖𝑋 −𝑋‖𝐹 = 𝜀‖𝑋‖𝐹.

Thus, PCA approximately preserves topological features up to a controlled relative error 𝜀 > 0.

Spectral Laplacian embedding
Using the kNN graph Γ of 𝑋, construct the graph Laplacian (optionally with a similarity
kernel) and compute the bottom-𝑘 eigenvectors for embedding. This method often captures
manifold structure but may not preserve global relationships.

Force-directed layout
After obtaining an initial embedding 𝑌, DiRe–JAX applies an iterative force-directed layout
to align 𝑌’s local structure with that of 𝑋. Attraction and repulsion forces are modeled after
tSNE and UMAP kernels

𝜑(𝑥) = 1
1 + 𝑎‖𝑥‖2𝑏

, with 𝑎, 𝑏 > 0,

tuned by min_dist = 𝛿 and spread = 𝜎 so that:

• 𝜑(𝑥) ≈ 1.0 for ‖𝑥‖ < 𝛿, and
• 𝜑(𝑥) ≈ exp(−(‖𝑥‖ − 𝛿)/𝜎) otherwise.

Attraction forces apply to kNN neighbors in Γ, while all other pairs experience repulsion.
Layout iterations run until a preset number of steps is reached.

Code availability
The DiRe - JAX repository is available on GitHub. An installable package is available on PyPI.

Kolpakov, & Rivin. (2025). DiRe - JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data. Journal of Open Source Software,
10(110), 8264. https://doi.org/10.21105/joss.08264.

4

https://github.com/sashakolpakov/dire-jax
https://pypi.org/project/dire-jax/
https://doi.org/10.21105/joss.08264

Whitepaper
The DiRe - JAX whitepaper is available on the arXiv preprint server.

Acknowledgements
The authors would like to thank @Treys925 (Trey Smith, University of Michigan, Ann Arbor),
@crhea93 (Carter Lee Rhea, Université de Montréal), and @lmcinnes (Leland McInnes, Tutte
Institute for Mathematics and Computing) for their helpful comments and suggestions. This
work is supported by the Google Cloud Research Award number GCP19980904.

References
Chari, T., & Pachter, L. (2023). The specious art of single-cell genomics. PLoS Computational

Biology, 19(8), e1011288. https://doi.org/10.1371/journal.pcbi.1011288

Chazal, F., Silva, V. de, & Oudot, S. (2014). Persistence stability for geometric complexes.
Geometriae Dedicata, 173(1), 193–214. https://doi.org/10.1007/s10711-013-9937-z

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.-E., Lomeli, M., Hosseini,
L., & Jégou, H. (2024). The FAISS library. https://arxiv.org/abs/2401.08281

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26, 189–206. https://doi.org/10.1090/conm/026

Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell transcriptomics. Nature
Communications, 10(1), 5416. https://doi.org/10.1038/s41467-019-13056-x

Kolpakov, & Rivin. (2025). DiRe - JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data. Journal of Open Source Software,
10(110), 8264. https://doi.org/10.21105/joss.08264.

5

https://arxiv.org/abs/2503.03156
https://github.com/Treys925
https://github.com/crhea93
https://github.com/lmcinnes
https://doi.org/10.1371/journal.pcbi.1011288
https://doi.org/10.1007/s10711-013-9937-z
https://arxiv.org/abs/2401.08281
https://doi.org/10.1090/conm/026
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.21105/joss.08264

	Summary
	Statement of need
	Benchmarks
	Dataset: Disk Uniform
	Dataset: Two Half–Moons
	Dataset: Levine 32

	Main methods
	Random Projection embedding
	Principal Component Analysis embedding
	Spectral Laplacian embedding
	Force-directed layout

	Code availability
	Whitepaper
	Acknowledgements
	References

