
asyncmd: A python library to orchestrate complex
molecular dynamics simulation campaigns on high
performance computing systems
Hendrik Jung 1 and Gerhard Hummer 1,2

1 Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Frankfurt am Main,
Germany 2 Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany

DOI: 10.21105/joss.08321

Software
• Review
• Repository
• Archive

Editor: Evan Spotte-Smith
Reviewers:

• @braniii
• @corettialessandro

Submitted: 06 May 2025
Published: 14 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Molecular dynamics (MD) simulations have become an integral tool to study complex molecular
rearrangements and molecular phenomena in many fields and of many different molecular
compounds. They are especially useful to study the dynamics, interactions, and function
of biomolecules such as proteins, DNA, RNA, lipids, and small drug-like molecules. In
MD simulations, the time evolution of a molecular system is obtained by solving Newton’s
equations of motion in small timesteps starting from a given initial configuration. Due to
the inherent sequential nature of MD and the high dimensionality and complexity of the
studied (bio)molecular systems, it can be challenging to reach the timescale of the (biological)
events under investigation within a single MD trajectory. This challenge can be addressed by
running many MD simulations simultaneously on a high performance computing (HPC) system
- possibly in an adaptive manner and combined with enhanced sampling techniques - and then
making full use of the resulting ensemble of trajectories. It is therefore paramount to enable
MD users to efficiently setup and orchestrate a large number of simultaneous simulations
with dynamic dependencies and flexible termination conditions. asyncmd enables users to
define complex MD sampling workflows in python from simple building blocks and executes
these computations directly via the queuing system of a HPC resource. The submission of
smaller computation tasks as single jobs (with differing requirements) to the queuing system
ensures optimal usage of the heterogeneous resources of modern HPC systems. In addition,
this approach supports dynamically growing and shrinking of the total resources allocated to
the computation by design, also depending on the demand of other users of the same HPC
system. By providing their common building blocks, asyncmd also simplifies the development
and implementation of advanced trajectory-based enhanced sampling algorithms, including the
weighted ensemble method, the string method, or transition path sampling.

Statement of need
A challenge faced when performing MD simulations of complex (bio)molecular rearrangements
is the disparity of timescales between the integration timestep, which needs to be small (usually
on the order of femtoseconds) to ensure accurate integration of Newton’s equations of motion,
and the time needed to observe the (biological) process under investigation, which can be on
the order of seconds to minutes. Due to the sequential nature inherent to solving Newton’s
equations of motion in small timesteps, MD simulations can only be parallelized to a certain
degree and much of the parallelization possible relies on dividing the system into regions that
are sufficiently far apart to not interact directly with each other. Taken together with the trend
that, in the recent past, computing resources have mostly become wider (i.e. more parallel)
but not faster (i.e. not increased in clock speed), the result is that the simulated systems have

Jung, & Hummer. (2025). asyncmd: A python library to orchestrate complex molecular dynamics simulation campaigns on high performance
computing systems. Journal of Open Source Software, 10(112), 8321. https://doi.org/10.21105/joss.08321.

1

https://orcid.org/0000-0002-2159-0391
https://orcid.org/0000-0001-7768-746X
https://doi.org/10.21105/joss.08321
https://github.com/openjournals/joss-reviews/issues/8321
https://github.com/bio-phys/asyncmd
https://doi.org/10.5281/zenodo.16572092
https://espottesmith.github.io
https://orcid.org/0000-0003-1554-197X
https://github.com/braniii
https://github.com/corettialessandro
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08321


become larger while the simulated time (per trajectory) did not increase by much anymore. A
common strategy to accumulate the required simulation time to observe the process under
investigation while also making the most efficient use of modern highly parallel HPC resources,
is to run many MD simulations of the same (biological) system with different initial conditions
simultaneously. This strategy results in a much higher total accumulated simulated time than
running one simulation on the same computing resources due to the inherent sequential nature
of MD. While, depending on the number of simultaneous MD simulations, it can be tedious but
still possible to manually setup a large number of MD simulations, continually monitoring their
progress quickly becomes unfeasible. However, in many cases it is much more computationally
efficient to, instead of performing MD for a fixed number of integration steps, terminate the
simulations (and potentially use the freed resources for another MD simulation) once a certain
condition is met or event occurred, e.g., the transition between two functional states of a
biomolecule. Conversely, if the goal is to explore a functional state previously unreached by
MD, it can be much more efficient to (re)start a large number of MD simulations from the
first configuration that reaches the state in any of a number of simulations started from known
states.

asyncmd is a python library facilitating flexible, programmatic and parallel setup, control,
and analysis of an arbitrary number of MD simulations on HPC resources using the python
async/await syntax. The library currently supports the SLURM queuing system (Jette &
Wickberg, 2023) and the GROMACS MD engine (Páll et al., 2020), but can easily be extended
to other queuing systems and MD engines. To enable the handling of many MD engines
simultaneously, all MD engines return a lightweight Trajectory object that only contains
references to the underlying files and some useful metadata such as the length of the trajectory
or the integration timestep used. All trajectory reading and writing operations performed
make use of the MDAnalysis library (Gowers et al., 2016; Michaud-Agrawal et al., 2011),
which means that asyncmd can profit from the extensive variety of trajectory formats and
MD engines supported in MDAnalysis. Notable features of the asyncmd library include the
propagation of MD until any or all user-supplied conditions are fulfilled on the trajectory, the
parallelized application of user defined (python) functions on existing or generated trajectories
(including the automatic caching of calculated values), and a dictionary-like interface to the
MD parameters. By additionally making it easy to extract any molecular configuration to
(re)start an arbitrary number of MD simulations from it, users are enabled to build complex
sampling schemes with dynamical dependencies from simple building blocks in python.

All computationally costly operations are submitted via the queuing system, i.e., the process
running asyncmd has a low computational footprint and can be run on the login node to
control complex and long running simulation setups with dynamic dependencies. Additionally,
the submission via the existing queuing system ensures that the available HPC resources are
efficiently shared with other users independently of them using asyncmd or not. For each
submittable computation asyncmd includes a locally executed equivalent using the same calling
convention to facilitate quick prototyping and implementation of (new) algorithms using small
test systems on local compute resources. By making it easy to move the execution from a
workstation to a HPC cluster, the newly implemented algorithms can then be applied directly
to larger, computationally more costly molecular systems.

asyncmd can therefore be used to manage large scale MD simulation campaigns on HPC
resources. In addition, asyncmd provides an ideal building block to develop and implement
trajectory based enhanced sampling methods as, e.g., variants of the string method (E et al.,
2002), highly parallelized transition path or transition interface sampling methods (Dellago
et al., 2002; van Erp et al., 2003), flux sampling methods (Chandler, 1978; Ruiz-Montero et
al., 1997), or the weighted ensemble method (G. A. Huber & Kim, 1996). Showcasing its
potential, asyncmd was already used to develop and implement the AI for molecular mechanism
discovery (aimmd) algorithm (Jung, 2022; Jung et al., 2023), which adaptively steers a large
number of simultaneous MD simulations using a combination of transition path sampling and
machine learning.

Jung, & Hummer. (2025). asyncmd: A python library to orchestrate complex molecular dynamics simulation campaigns on high performance
computing systems. Journal of Open Source Software, 10(112), 8321. https://doi.org/10.21105/joss.08321.

2

https://doi.org/10.21105/joss.08321


In addition to its documentation, asyncmd includes a number of examples in the form of Jupyter
notebooks. These notebooks illustrate most of the common operations, such as performing
MD simulations (possibly until a condition is fulfilled) or how to extract configurations from
trajectories to restart MD simulations from it, but also include an example showcasing how to
implement the weighted ensemble method.

State of the field
A number of other software packages are relevant in the context of submitting MD simulations
on HPC resources or to control them from python, which will be discussed in the following.

Notably, it is possible to control and define MD simulation workflows for GROMACS in python
by using its gmxapi python interface (C. A. K. Irrgang M. Eric AND Davis, 2022; M. E. Irrgang
et al., 2018). While gmxapi allows for fine grained control of the MD simulation (including,
e.g., custom stopping conditions and user plugin code within the force calculation), it is only
possible to interact with MD simulations running within the same job allocation or on the
same local machine.

The definition and submission of a general (non MD-specific) computational workflow spanning
over multiple job allocations on HPC resources from python is possible by using AiiDA (S.
P. Huber et al., 2020; Uhrin et al., 2021) or by using the combination of row (Anderson et
al., 2024) and signac (Adorf et al., 2018). Both, AiiDa and signac/row, have an emphasis
on automatically storing data provenance, while asyncmd makes no attempt to store any
input/output relations and it is the users responsibility (and freedom) to choose an adequate
solution for their use-case to track data provenance. AiiDA currently supports a number of
different queuing systems, but it is not possible to request accelerator resources such as GPUs.
row currently only supports the SLURM queuing system, but offers a finer control over the
job resources including the requested memory and number of GPUs. asyncmd currently also
only supports the SLURM queuing system, but offers support for any option of the SLURM
“sbatch” command to control the requested resources for and execution of the jobs. MD
simulations can be performed with AiiDA by using the aiida-gromacs plugin (Gebbie-Rayet
& Kalayan, 2022) and martignac (Bereau et al., 2024) defines a number of coarse-grained
Martini simulation workflows with signac. Another notable package enabling high-throughput
MD simulations in the context of materials science is atomate2 (Ganose et al., 2025), which is
also capable of submitting the computations to remote (HPC) resources. However, to the best
knowledge of the authors, no other package besides asyncmd exists that offers the submission
and control of many MD simulation via a queuing system, while also focusing on versatile and
dynamic stopping conditions for the simulations to provide simple building blocks for enhanced
sampling algorithms.

Finally, what sets asyncmd apart from full-fledged implementations of path sampling and other
trajectory based sampling methods, such as, e.g., openpathsampling (Swenson et al., 2019a,
2019b), is that it does not implement any specific algorithms to drive the sampling, but instead
strives to only provide the common building blocks shared between many trajectory based
enhanced sampling methods.

Acknowledgements
The authors thank all users of asyncmd for contributing feedback and suggesting new features,
especially Matea Turalija and Vedran Miletic, for feedback on and contributions to the code.
H.J. and G.H. thank the Max Planck Society for financial support and the Max Planck
Computing and Data Facility (MPCDF) for computing support.

Jung, & Hummer. (2025). asyncmd: A python library to orchestrate complex molecular dynamics simulation campaigns on high performance
computing systems. Journal of Open Source Software, 10(112), 8321. https://doi.org/10.21105/joss.08321.

3

https://doi.org/10.21105/joss.08321


References
Adorf, C. S., Dodd, P. M., Ramasubramani, V., & Glotzer, S. C. (2018). Simple data

and workflow management with the signac framework. Computational Materials Science,
146(C), 220–229. https://doi.org/10.1016/j.commatsci.2018.01.035

Anderson, J. A., Bradley, J., Burkhart, J., Jensen, K., Moore, T., Kerr, C., & Teague, T.
(2024). Row. In GitHub repository. GitHub. https://github.com/glotzerlab/row

Bereau, T., Walter, L. J., & Rudzinski, J. F. (2024). Martignac: Computational workflows
for reproducible, traceable, and composable coarse-grained martini simulations. Journal
of Chemical Information and Modeling, 64(24), 9413–9423. https://doi.org/10.1021/acs.
jcim.4c01754

Chandler, D. (1978). Statistical mechanics of isomerization dynamics in liquids and the
transition state approximation. The Journal of Chemical Physics, 68(6), 2959–2970.
https://doi.org/10.1063/1.436049

Dellago, C., Bolhuis, P. G., & Geissler, P. L. (2002). Transition Path Sampling. In Advances
in Chemical Physics (Vol. 123, pp. 1–78). John Wiley & Sons, Ltd. https://doi.org/10.
1002/0471231509.ch1

E, W., Ren, W., & Vanden-Eijnden, E. (2002). String method for the study of rare events.
Physical Review B, 66(5), 052301. https://doi.org/10.1103/PhysRevB.66.052301

Ganose, A. M., Sahasrabuddhe, H., Asta, M., Beck, K., Biswas, T., Bonkowski, A., Bustamante,
J., Chen, X., Chiang, Y., Chrzan, D. C., Clary, J., Cohen, O. A., Ertural, C., Gallant,
M. C., George, J., Gerits, S., Goodall, R. E. A., Guha, R. D., Hautier, G., … Jain, A.
(2025). Atomate2: Modular workflows for materials science. Digital Discovery. https:
//doi.org/10.1039/D5DD00019J

Gebbie-Rayet, J., & Kalayan, J. (2022). Aiida-gromacs. In GitHub repository. GitHub.
https://github.com/PSDI-UK/aiida-gromacs

Gowers, Richard J., Linke, Max, Barnoud, Jonathan, Reddy, Tyler J. E., Melo, Manuel
N., Seyler, Sean L., Domański, Jan, Dotson, David L., Buchoux, Sébastien, Kenney,
Ian M., & Beckstein, Oliver. (2016). MDAnalysis: A Python Package for the Rapid
Analysis of Molecular Dynamics Simulations. In Sebastian Benthall & Scott Rostrup
(Eds.), Proceedings of the 15th Python in Science Conference (pp. 98–105). https:
//doi.org/10.25080/Majora-629e541a-00e

Huber, G. A., & Kim, S. (1996). Weighted-ensemble Brownian dynamics simulations for
protein association reactions. Biophysical Journal, 70(1), 97–110. https://doi.org/10.
1016/S0006-3495(96)79552-8

Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller,
T., Yakutovich, A. V., Andersen, C. W., Ramirez, F. F., Adorf, C. S., Gargiulo, F., Kumbhar,
S., Passaro, E., Johnston, C., Merkys, A., Cepellotti, A., Mounet, N., … Pizzi, G. (2020).
AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and
data provenance. Scientific Data, 7 (1), 300. https://doi.org/10.1038/s41597-020-00638-4

Irrgang, C. A. K., M. Eric AND Davis. (2022). Gmxapi: A GROMACS-native python interface
for molecular dynamics with ensemble and plugin support. PLOS Computational Biology,
18(2), 1–12. https://doi.org/10.1371/journal.pcbi.1009835

Irrgang, M. E., Hays, J. M., & Kasson, P. M. (2018). Gmxapi: A high-level interface for
advanced control and extension of molecular dynamics simulations. Bioinformatics, 34(22),
3945–3947. https://doi.org/10.1093/bioinformatics/bty484

Jette, M. A., & Wickberg, T. (2023). Architecture of the slurm workload manager. In
D. Klusáček, J. Corbalán, & G. P. Rodrigo (Eds.), Job scheduling strategies for par-

Jung, & Hummer. (2025). asyncmd: A python library to orchestrate complex molecular dynamics simulation campaigns on high performance
computing systems. Journal of Open Source Software, 10(112), 8321. https://doi.org/10.21105/joss.08321.

4

https://doi.org/10.1016/j.commatsci.2018.01.035
https://github.com/glotzerlab/row
https://doi.org/10.1021/acs.jcim.4c01754
https://doi.org/10.1021/acs.jcim.4c01754
https://doi.org/10.1063/1.436049
https://doi.org/10.1002/0471231509.ch1
https://doi.org/10.1002/0471231509.ch1
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1039/D5DD00019J
https://doi.org/10.1039/D5DD00019J
https://github.com/PSDI-UK/aiida-gromacs
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1371/journal.pcbi.1009835
https://doi.org/10.1093/bioinformatics/bty484
https://doi.org/10.21105/joss.08321


allel processing (pp. 3–23). Springer Nature Switzerland. https://doi.org/10.1007/
978-3-031-43943-8_1

Jung, H. (2022). Aimmd: AI for molecular mechanism discovery. In GitHub repository. GitHub.
https://github.com/bio-phys/aimmd

Jung, H., Covino, R., Arjun, A., Leitold, C., Dellago, C., Bolhuis, P. G., & Hummer, G. (2023).
Machine-guided path sampling to discover mechanisms of molecular self-organization. Na-
ture Computational Science, 3(4), 334–345. https://doi.org/10.1038/s43588-023-00428-z

Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis:
A toolkit for the analysis of molecular dynamics simulations. Journal of Computational
Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787

Páll, S., Zhmurov, A., Bauer, P., Abraham, M., Lundborg, M., Gray, A., Hess, B., &
Lindahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics
simulations in GROMACS. The Journal of Chemical Physics, 153(13), 134110. https:
//doi.org/10.1063/5.0018516

Ruiz-Montero, M. J., Frenkel, D., & Brey, J. J. (1997). Efficient schemes to compute diffusive
barrier crossing rates. Molecular Physics, 90(6), 925–942. https://doi.org/10.1080/
002689797171922

Swenson, D. W. H., Prinz, J.-H., Noe, F., Chodera, J. D., & Bolhuis, P. G. (2019a). OpenPath-
Sampling: A Python framework for path sampling simulations. 1. Basics. Journal of Chem-
ical Theory and Computation, 15(2), 813–836. https://doi.org/10.1021/acs.jctc.8b00626

Swenson, D. W. H., Prinz, J.-H., Noe, F., Chodera, J. D., & Bolhuis, P. G. (2019b). OpenPath-
Sampling: A Python framework for path sampling simulations. 2. Building and customizing
path ensembles and sample schemes. Journal of Chemical Theory and Computation, 15(2),
837–856. https://doi.org/10.1021/acs.jctc.8b00627

Uhrin, M., Huber, S. P., Yu, J., Marzari, N., & Pizzi, G. (2021). Workflows in AiiDA:
Engineering a high-throughput, event-based engine for robust and modular computational
workflows. Computational Materials Science, 187, 110086. https://doi.org/10.1016/j.
commatsci.2020.110086

van Erp, T. S., Moroni, D., & Bolhuis, P. G. (2003). A novel path sampling method for
the calculation of rate constants. The Journal of Chemical Physics, 118(17), 7762–7774.
https://doi.org/10.1063/1.1562614

Jung, & Hummer. (2025). asyncmd: A python library to orchestrate complex molecular dynamics simulation campaigns on high performance
computing systems. Journal of Open Source Software, 10(112), 8321. https://doi.org/10.21105/joss.08321.

5

https://doi.org/10.1007/978-3-031-43943-8_1
https://doi.org/10.1007/978-3-031-43943-8_1
https://github.com/bio-phys/aimmd
https://doi.org/10.1038/s43588-023-00428-z
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
https://doi.org/10.1080/002689797171922
https://doi.org/10.1080/002689797171922
https://doi.org/10.1021/acs.jctc.8b00626
https://doi.org/10.1021/acs.jctc.8b00627
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1063/1.1562614
https://doi.org/10.21105/joss.08321

	Summary
	Statement of need
	State of the field

	Acknowledgements
	References

