
Piecewise: Flexible piecewise functions for fast integral
transforms in Julia
Christophe Berthod 1

1 Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland
DOI: 10.21105/joss.08329

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @ranocha
• @dawbarton

Submitted: 04 April 2025
Published: 22 September 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A piecewise function of a real variable 𝑥 returns a value computed from a rule that can
be different in each interval of the values of 𝑥. The Julia (Bezanson et al., 2017) module
Piecewise provides an implementation of piecewise functions, where the user is free to choose
the rules. A mechanism allows for fitting a piecewise function made of user-defined formulas
to a real function of a real variable. With appropriately chosen formulas, various integral
transforms of the piecewise function become directly available without relying on quadratures.
The module Piecewise defines seven formula that enable the fast calculation of the moments
of the piecewise function. The module PiecewiseHilbert supplements these formula with
methods enabling a fast Hilbert transform. The module PiecewiseLorentz extends some
of these formula to enable what we call a Lorentz transform. This code was written to
solve a quantum physics problem involving several coupled integral equations (Berthod, 2025;
Morpurgo et al., 2024, 2025).

Statement of need
The interpolation problem, which consists in constructing a continuous function out of discrete
data, is ubiquitous in many areas of science and technology. This problem has been traditionally
solved by means of global or piecewise polynomial functions (Bhagavan et al., 2024; Kittisopikul
et al., 2023; Wikibooks, 2021). The various interpolation schemes differ by the order of the
polynomials, the choice of the sampling points when this choice is possible, and the additional
conditions required when the solution is not uniquely determined by the data. Beside drawing a
smooth curve through points in a graph, one important use of interpolations is for constructing
a cheap but accurate approximation of a computer-intensive function. Powerful tools have been
developed for smooth functions that are well approximated by polynomial interpolants using
Chebyshev points (Driscoll et al., 2014; Olver & Townsend, 2014). However, if the function
presents critical points like discontinuities or singularities, all polynomial interpolations fail in
the neighborhood of these points, due to the absence of a convergent Taylor series. When the
underlying function has critical points and accuracy is an issue, there is a need for piecewise
interpolation schemes that are based on nonanalytic functions rather than polynomials.

The mathematical problems involving integral equations (i.e., when the unknown function
appears inside an integral) are often solved numerically by discretizing the integral and setting
up an iteration. This introduces a discretization error. A choice of the discrete grid that
minimizes the error would generally be nonuniform and require a priori knowledge of the
solution. An optimization of the grid is possible through iterative refinement. However, if the
actual solution has critical points, the iterative refinement will likely fail. Another approach is
to represent the solution at iteration 𝑛 as a piecewise function, evaluate the integrals using
quadratures, and fit a new piecewise function to the solution computed at iteration 𝑛 + 1.
This algorithm may not be faster than the discretization approach, but it eliminates the

Berthod. (2025). Piecewise: Flexible piecewise functions for fast integral transforms in Julia. Journal of Open Source Software, 10(113), 8329.
https://doi.org/10.21105/joss.08329.

1

https://orcid.org/0000-0002-0787-008X
https://doi.org/10.21105/joss.08329
https://github.com/openjournals/joss-reviews/issues/8329
https://github.com/ChristopheBerthod/Piecewise.jl
https://doi.org/10.5281/zenodo.17016438
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/ranocha
https://github.com/dawbarton
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08329

discretization bias. Furthermore, the critical points can in principle be captured in a piecewise
function involving appropriate nonanalytic functions. The procedure requires recursively fitting
a set of elementary functions, including nonanalytic ones that are problem dependent, to a
given function, until a sufficient accuracy is achieved in each piece. To our knowledge, no
Julia package offers this functionality.

A subclass of all integral equations comprises those involving linear integral transforms of the
kind (𝐾 ∘ 𝑓)(X) = ∫∞

−∞
𝑑𝑥 𝑓(𝑥)𝐾(𝑥,X), where 𝑓(𝑥) is a function of a real variable 𝑥 and

𝐾(𝑥,X) is a kernel depending on 𝑥 and another, possibly multidimensional, variable X. For
instance, the 𝑛-th moment of a distribution is the integral transform of this distribution with
kernel 𝐾(𝑥, 𝑛) = 𝑥𝑛. Other examples include the Fourier transform with 𝐾(𝑥, 𝑘) = 𝑒−𝑖𝑘𝑥,
the Laplace transform with 𝐾(𝑥, 𝑠) = 𝜃(𝑥)𝑒−𝑠𝑥, 𝜃(𝑥) being the Heaviside step function, the
Hilbert transform with 𝐾(𝑥, 𝑦) = 1/(𝑦 − 𝑥 + 𝑖0+), or more generally 𝐾(𝑥, 𝑧) = 1/(𝑧 − 𝑥)
with 𝑧 ∈ ℂ ∖ ℝ a complex number with finite imaginary part. If the function 𝑓(𝑥) is
represented as a piecewise function, and if the various elementary functions 𝐹𝑖(𝑥) used in this
piecewise representation are such, that the solution of the differential equation 𝑑

𝑑𝑥𝑃𝑖(𝑥,X) =
𝐹𝑖(𝑥)𝐾(𝑥,X) is known analytically, then (𝐾 ∘ 𝑓)(X) is immediately available by evaluating
the functions 𝑃𝑖(𝑥,X) at the boundaries of each piece. This may significantly outperform the
evaluation of (𝐾 ∘ 𝑓)(X) using quadratures, especially near the critical points of 𝑓(𝑥), where
the quadratures typically converge slowly, if they converge at all. Thus, an environment where
problem-dependent functions 𝐹𝑖(𝑥) may be defined and used in piecewise functions, together
with kernel-dependent functions 𝑃𝑖(𝑥,X), is desirable.

The Piecewise modules
The module Piecewise provides such an environment based on three structures. A structure
called Formula holds a user-defined function depending on a given number of parameters,
together with possible restrictions regarding the values of these parameters with respect to
the interval in which the formula is used. A second structure called Piece holds an interval, a
rule that can be a sum of Formula objects, and the parameters to be passed to these formula.
Finally, a structure called PiecewiseFunction holds a collection of Piece objects. The module
comes with a small set of pre-defined Formula that should cover a wide variety of cases and a
method for fitting a PiecewiseFunction object to a given function. The pre-defined Formula

earn additional methods in the module PiecewiseHilbert, such that the Hilbert transform
of piecewise functions using these formula can be evaluated without using quadratures. The
module PiecewiseLorentz offers this functionality for another integral transform (see the
documentation).

Examples
1. Two tutorials are available as Jupyter notebooks:

• Tutorial 1: Constructing approximations with Piecewise.piecewisefit

• Tutorial 2: Solving an implicit equation using PiecewiseHilbert

2. For a complete use case, see MagnetoTransport.jl.

3. For an example of nonlinear integral equation solved using Piecewise, see van der Marel
& Berthod (2024).

4. A simple demonstration is provided below. It is an abbreviated form of Tutorial 1, where
ample explanation and details are given.

Electronic density of states (DOS) functions typically have critical points. The DOS is derived
from a dispersion relation 𝜀(k) as 𝑁(𝐸) = ∫ d𝑑𝑘

(2𝜋)𝑑 𝛿(𝐸 − 𝜀(k)) in dimension 𝑑, where 𝛿(⋅)
is the Dirac delta function. 𝑁(𝐸) has critical points whenever ∇𝜀(k) = 0 for some k. The

Berthod. (2025). Piecewise: Flexible piecewise functions for fast integral transforms in Julia. Journal of Open Source Software, 10(113), 8329.
https://doi.org/10.21105/joss.08329.

2

https://christopheberthod.github.io/Piecewise.jl/dev/lorentz.html
https://github.com/ChristopheBerthod/Piecewise.jl/blob/main/notebooks/Tutorial-1.ipynb
https://christopheberthod.github.io/Piecewise.jl/dev/index.html#Piecewise.piecewisefit
https://github.com/ChristopheBerthod/Piecewise.jl/blob/main/notebooks/Tutorial-2.ipynb
https://christopheberthod.github.io/Piecewise.jl/dev/hilbert.html
https://github.com/ChristopheBerthod/MagnetoTransport.jl
https://github.com/ChristopheBerthod/Piecewise.jl/blob/main/notebooks/Tutorial-1.ipynb
https://doi.org/10.21105/joss.08329

DOS is an ingredient of many calculations, but in general it is not known analytically. In the
following illustration, we construct a one-piece approximation with relative accuracy below
10−5 for such a DOS function.

Electrons hopping with unit energy between neighboring sites of a two-dimensional square lattice
with unit lattice parameter have a dispersion relation 𝜀(k) = 2(cos 𝑘𝑥 + cos 𝑘𝑦). This case is
peculiar in that the DOS is known analytically: 𝑁(𝐸) = 𝐾(1 − (𝐸/4)2)𝜃(4 − |𝐸|)/(2𝜋2)
with 𝐾 the elliptic function. It has two discontinuities at 𝐸 = ±4 and a logarithmic singularity
at 𝐸 = 0.

We proceed as follows to construct a piecewise approximation to the DOS.

1. We define the DOS (here: an explicit formula; in general: the result of a numerical
quadrature).

2. We remove the known logarithmic singularity — represented as a PiecewiseFunction

— from the DOS.
3. We fit a polynomial to the residual (the algorithm automatically chooses order 9 to

achieve the requested accuracy) and we add the logarithmic singularity back.
4. We check the error of the approximation.

julia> using SpecialFunctions: ellipk

julia> using Piecewise

julia> # DOS function. Due to the dependence on E^2, ellipk(1 - (E / 4)^2)

julia> # loses accuracy for |E| < 1e-4. We use the known expansion instead.

julia> N(E) = (abs(E) < 1e-4 ? log(16 / abs(E)) : abs(E) > 4 ? 0.0 :

ellipk(1 - (E / 4)^2)) / (2 * π^2);

julia> # Piecewise function representing the logarithmic singularity

julia> singularity = PiecewiseFunction(:even,

Piece((0, 4), (false, true), LOG, [0, -1 / (2 * π^2)]));

julia> # Remove the singularity before fitting and add it back afterwards

julia> # PiecewiseFunction objects can be summed.

julia> f = piecewisefit(E -> N(E) - singularity(E),

(0, 4), [POLY], parity=:even, rtol=5e-6);

julia> f += singularity

< Piecewise even function with 1 piece and support [-4.0, 4.0] >

julia> # Check that the relative error is smaller than 1e-5

julia> maximum(LinRange(-4, 4, 1000) .|> E -> abs(f(E) ./ N(E) - 1)) < 1e-5

true

julia> # Printing a PiecewiseFunction shows the constructor for that object.

julia> # The exact numbers may vary, as randomness is involved in the fitting.

julia> println(f)

PiecewiseFunction(:even, [

Piece((0.0, 4.0), (false, true), [POLY, LOG],

[[1.404609620501190e-01, 1.174637035445451e-04, 2.462481494536943e-03,

-1.995071066151247e-03, 1.349285972889321e-03, -6.607932327688245e-04,

2.158678002039584e-04, -4.417944490515085e-05, 5.103263826300048e-06,

-2.533300199959029e-07], [0.000000000000000e+00,

-5.066059182116889e-02]])

])

Berthod. (2025). Piecewise: Flexible piecewise functions for fast integral transforms in Julia. Journal of Open Source Software, 10(113), 8329.
https://doi.org/10.21105/joss.08329.

3

https://doi.org/10.21105/joss.08329

References
Berthod, C. (2025). Linear magneto-transport with a local self-energy in Julia. https:

//github.com/ChristopheBerthod/MagnetoTransport.jl.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65. https://doi.org/10.1137/141000671

Bhagavan, S., de Koning, B., Maddhashiya, S., & Rackauckas, C. (2024). DataInterpolations.jl:
Fast interpolations of 1D data. Journal of Open Source Software, 9(101), 6917. https:
//doi.org/10.21105/joss.06917

Driscoll, T. A., Hale, N., & Trefethen, L. N. (Eds.). (2014). Chebfun Guide. https://www.
chebfun.org; Pafnuty Publications.

Kittisopikul, M., Holy, T. E., & Aschan, T. (2023). JuliaMath/Interpolations.jl: v0.15.1.
https://github.com/JuliaMath/Interpolations.jl.

Morpurgo, G., Berthod, C., & Giamarchi, T. (2025). Universal low-density power laws of
the dc conductivity and Hall constant in the self-consistent Born approximation. Physical
Review Research, 7, 033038. https://doi.org/10.1103/nzrk-yfqk

Morpurgo, G., Rademaker, L., Berthod, C., & Giamarchi, T. (2024). Hall response of locally
correlated two-dimensional electrons at low density. Physical Review Research, 6, 013112.
https://doi.org/10.1103/PhysRevResearch.6.013112

Olver, S., & Townsend, A. (2014). A practical framework for infinite-dimensional linear algebra.
Proceedings of the 1st Workshop for High Performance Technical Computing in Dynamic
Languages – HPTCDL ‘14. https://doi.org/10.1109/HPTCDL.2014.10

van der Marel, D., & Berthod, C. (2024). Superconductivity in metallic hydrogen. Newton, 1,
100002. https://doi.org/10.1016/j.newton.2024.100002

Wikibooks. (2021). Introduction to numerical methods — Wikibooks, the free textbook project.
https://en.wikibooks.org/wiki/Introduction_to_Numerical_Methods/Interpolation

Berthod. (2025). Piecewise: Flexible piecewise functions for fast integral transforms in Julia. Journal of Open Source Software, 10(113), 8329.
https://doi.org/10.21105/joss.08329.

4

https://github.com/ChristopheBerthod/MagnetoTransport.jl
https://github.com/ChristopheBerthod/MagnetoTransport.jl
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.06917
https://doi.org/10.21105/joss.06917
https://www.chebfun.org
https://www.chebfun.org
https://github.com/JuliaMath/Interpolations.jl
https://doi.org/10.1103/nzrk-yfqk
https://doi.org/10.1103/PhysRevResearch.6.013112
https://doi.org/10.1109/HPTCDL.2014.10
https://doi.org/10.1016/j.newton.2024.100002
https://en.wikibooks.org/wiki/Introduction_to_Numerical_Methods/Interpolation
https://doi.org/10.21105/joss.08329

	Summary
	Statement of need
	The Piecewise modules
	Examples
	References

