
SDA: a symbolic differential algebra package in C++
He Zhang 1¶

1 Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ¶ Corresponding
author

DOI: 10.21105/joss.08330

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @mbkumar
• @kpeeters

Submitted: 28 May 2025
Published: 05 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Truncated Power Series Algebra (TPSA), or Differential Algebra (DA), is a well-established
tool in accelerator physics, commonly used for generating high-order maps of dynamic systems,
as well as in symplectic tracking, normal form analysis, verified integration, optimization, and
fast multipole methods. This package is the first to perform symbolic DA computations,
enabling traceability of initial condition contributions and runtime reduction for repeated DA
calculations, potentially expanding DA’s applications.

Background
The fundamental concept in DA is the DA vector, which can be considered as the Taylor
expansion of a function at a specific point from a practical perspective.

Considering a function 𝑓(x) and its Taylor expansion 𝑓T(x0) at the point x0 up to order 𝑛,
we can define the equivalence relation between the Taylor expansion and the DA vector as:

[𝑓]𝑛 = 𝑓T(x0) = ∑𝐶𝑛1,𝑛2,...,𝑛𝑣
⋅ 𝑑𝑛1

1 ⋅ ⋯ ⋅ 𝑑𝑛𝑣𝑣 ,
where x = (𝑥1, 𝑥2,… , 𝑥𝑣), and 𝑛 ≥ 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑣. Here 𝑑𝑖 is a special number: it
represents a small variance in 𝑥𝑖. To add two DA vectors, we simply add the coefficients of
the like terms. To multiply two DA vectors, we multiply each term in the first with all the
terms in the second and then combine like terms, ignoring all terms above order 𝑛. Given two
DA vectors [𝑎]𝑛 and [𝑏]𝑛 and a scalar c, we have

[𝑎]𝑛 + [𝑏]𝑛 ∶= [𝑎 + 𝑏]𝑛,
𝑐 ⋅ [𝑎]𝑛 ∶= [𝑐 ⋅ 𝑎]𝑛, (1)

[𝑎]𝑛 ⋅ [𝑏]𝑛 ∶= [𝑎 ⋅ 𝑏]𝑛.

According to the fixed point theorem (Berz, 1999), the inverse of a DA vector that is not
infinitely small can be calculated in a finite number of iterations. The derivation operator
𝜕𝑣 with respect to the 𝑣th variable and its inverse operator 𝜕−1𝑣 can be carried out on a
term-by-term basis on [𝑎]𝑛. A DA vector can be used in calculations just as a number.

The symbolic DA combines DA with symbolic calculation. Any coefficient of a Symbolic DA
(SDA) vector is an explicit expression of the symbols in lieu of a number.

Statement of need
DA has been used in particle beam dynamic analysis since the 1980s and gradually extended to
other fields. DA provides powerful tools (Berz, 1991a, 1991b) for analyzing dynamic systems.

Zhang. (2025). SDA: a symbolic differential algebra package in C++. Journal of Open Source Software, 10(112), 8330. https://doi.org/10.21105/
joss.08330.

1

https://orcid.org/0000-0001-7701-4118
https://doi.org/10.21105/joss.08330
https://github.com/openjournals/joss-reviews/issues/8330
https://github.com/zhanghe9704/tpsa_sym
https://doi.org/10.5281/zenodo.16740209
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/mbkumar
https://github.com/kpeeters
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08330
https://doi.org/10.21105/joss.08330


It is also used in various numerical algorithms, e.g., verified integration (Berz & Makino, 1998),
global optimization (Makino & Berz, 2005), and fast multipole method (Zhang & Berz, 2011).
DA tools are available in particle accelerator simulators (Deniau et al., 2017; Forest et al.,
2002; Grote & Schmidt, 2003; Makino & Berz, 2006) or as stand-alone libraries (Massari et
al., 2018; Massari & Wittig, 2021; Zhang, 2024). All of them only perform numerical DA
calculations. This is the first and only library for symbolic DA calculations.

The SDA package can be used in several important ways. First, in high-performance computing
scenarios involving differential algebra (DA), it can produce explicit expressions for the results
of complex DA calculations. These expressions enable the generation of highly efficient code
that eliminates the need for runtime DA computations, resulting in significant performance
improvements (Zhang, 2025a). This was the original motivation for developing the package.
Second, as a tool for dynamic analysis, it supports parametric and time-dependent studies by
allowing DA maps to vary with symbolic parameters. This makes it possible to analyze how
system behavior changes with evolving settings—something difficult to achieve with numerical
DA alone. Finally, it provides a new way to obtain symbolic expressions of higher-order
derivatives by following the algorithmic differentiation process, thus bridging the gap between
symbolic and numerical approaches (Zhang, 2025b).

Features
This library is based on the numerical DA library, cppTPSA (Zhang, 2024). All the DA
calculations are carried out on symbols using exactly the same algorithms in cppTPSA by
employing the SymEngine library (Fernando et al., 2024). Users can compile the source code
into a static or shared library and install it on their system. The main features of this library
are:

1. A custom SDA vector type with overloaded math operations, including composition,
differentiation, and inverse.

2. Extraction of explicit expressions for partial derivatives.
3. Generation of callable functions from an SDA vector.
4. Conversion of symbolic SDA to numerical DA.

The following code shows how to calculate the SDA vector of 1/√𝑥2 + 𝑦2 up to the third
order. After initializing a memory pool for 400 SDA vectors and defining the symbols, 𝑥 and 𝑦,
the SDA vector 𝑓 is calculated and shown in Figure 1. The orders of the bases, the index of
each term, and the coefficient of each term as a function of 𝑥 and 𝑦 are displayed in columns.

#include <iostream>

#include <sda.h>

typedef SymbDA::DAVector SDA;

using SymEngine::Expression;

int main() {

int order{3}, dim{2}, pool{400};

SymbDA::da_init(order, dim, pool);

auto& sda = SymbDA::da;

Expression sx("x"), sy("y");

SDA f = 1/sqrt((sx+sda[0])*(sx+sda[0]) + (sy+sda[1])*(sy+sda[1]));

std::cout<<f;

}

Zhang. (2025). SDA: a symbolic differential algebra package in C++. Journal of Open Source Software, 10(112), 8330. https://doi.org/10.21105/
joss.08330.

2

https://doi.org/10.21105/joss.08330
https://doi.org/10.21105/joss.08330


Figure 1: Example code output.

Verification
This library has been verified with the numerical DA library, cppTPSA, by assigning values to
all the symbols in an SDA vector and checking it against direct calculation using cppTPSA.
As an example, For example, Figure 2 and Figure 3 show the DA vector 𝑣 = exp(1.5926 +
𝑑21 + 5.3897 ⋅ 𝑑2) to the fifth order, calculated by SDA and DA respectively. We calculate
the relative error for each non-zero coefficient. This procedure is repeated 1,000 times for all
the math functions in the SDA lib and the absolute values of the relative errors are all below
1 × 10−15.

Figure 2: SDA output.

Zhang. (2025). SDA: a symbolic differential algebra package in C++. Journal of Open Source Software, 10(112), 8330. https://doi.org/10.21105/
joss.08330.

3

https://doi.org/10.21105/joss.08330
https://doi.org/10.21105/joss.08330


Figure 3: cppTPSA output.

Acknowledgements
This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

References
Berz, M. (1991a). Symplectic tracking in circular accelerators with high order maps. Nonlinear

Problems in Future Particle Accelerators, 288.

Berz, M. (1991b). High-order computation and normal form analysis of repetitive systems, in:
M. Month (Ed), physics of particle accelerators (Vol. 249, p. 456). American Institute of
Physics. https://doi.org/10.1063/1.41975

Berz, M. (1999). Modern map methods in particle beam physics. Academic Press. https:
//doi.org/10.1016/s1076-5670(08)x7018-1

Berz, M., & Makino, K. (1998). Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4, 361–369. https:
//doi.org/10.1023/A:1024467732637

Deniau, L., Skowronski, P., Roy, G., & others. (2017). MAD-X: Methodical accelerator design.
In GitHub repository. GitHub. https://doi.org/10.5281/zenodo.7900975

Fernando, I., Čertík, O., & others. (2024). SymEngine. https://github.com/symengine/
symengine

Forest, E., Schmidt, F., & McIntosh, E. (2002). Introduction to the polymorphic tracking
code. KEK Report, 3, 2002. https://inspirehep.net/literature/591979

Grote, H., & Schmidt, F. (2003). MAD-X-an upgrade from MAD8. Proceedings of the
2003 Particle Accelerator Conference, 5, 3497–3499. https://doi.org/10.1109/PAC.2003.
1289960

Makino, K., & Berz, M. (2005). Verified global optimization with Taylor model based range
bounders. Transactions on Computers, 11(4), 1611–1618. https://www.bmtdynamics.org/
pub/papers/GOM05/GOM05.pdf

Makino, K., & Berz, M. (2006). COSY INFINITY version 9. Nuclear Instruments and Methods,
558, 346–350. https://doi.org/10.1016/j.nima.2005.11.109

Zhang. (2025). SDA: a symbolic differential algebra package in C++. Journal of Open Source Software, 10(112), 8330. https://doi.org/10.21105/
joss.08330.

4

https://doi.org/10.1063/1.41975
https://doi.org/10.1016/s1076-5670(08)x7018-1
https://doi.org/10.1016/s1076-5670(08)x7018-1
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.5281/zenodo.7900975
https://github.com/symengine/symengine
https://github.com/symengine/symengine
https://inspirehep.net/literature/591979
https://doi.org/10.1109/PAC.2003.1289960
https://doi.org/10.1109/PAC.2003.1289960
https://www.bmtdynamics.org/pub/papers/GOM05/GOM05.pdf
https://www.bmtdynamics.org/pub/papers/GOM05/GOM05.pdf
https://doi.org/10.1016/j.nima.2005.11.109
https://doi.org/10.21105/joss.08330
https://doi.org/10.21105/joss.08330


Massari, M., Di Lizia, P., Cavenago, F., & Wittig, A. (2018). Differential algebra software library
with automatic code generation for space embedded applications. In 2018 AIAA information
systems-AIAA infotech@ aerospace (p. 0398). https://doi.org/10.2514/6.2018-0398

Massari, M., & Wittig, A. (2021). DACE: The differential algebra computational toolbox. In
GitHub repository. GitHub. https://github.com/dacelib/dace

Zhang, H. (2024). cppTPSA/pyTPSA: A C++/Python package for truncated power series
algebra. Journal of Open Source Software, 9(94), 4818. https://doi.org/10.21105/joss.
04818

Zhang, H. (2025a). Boosting the efficiency of the differential AlgebraBased fast multipole
method operators using symbolic calculation. Presented at the meeting of SIAM CSE25,
Fort Worth, Texas, U.S. https://www.siam.org/media/fyvh3qlf/cse25_abstracts.pdf

Zhang, H. (2025b). Higher-order automatic differentiation using symbolic differential algebra:
Bridging the gap between algorithmic and symbolic differentiation. https://arxiv.org/abs/
2506.00796

Zhang, H., & Berz, M. (2011). The fast multipole method in the differential algebra framework.
Nuclear Instruments and Methods A 645, 338–344. https://doi.org/10.1016/j.nima.2011.
01.053

Zhang. (2025). SDA: a symbolic differential algebra package in C++. Journal of Open Source Software, 10(112), 8330. https://doi.org/10.21105/
joss.08330.

5

https://doi.org/10.2514/6.2018-0398
https://github.com/dacelib/dace
https://doi.org/10.21105/joss.04818
https://doi.org/10.21105/joss.04818
https://www.siam.org/media/fyvh3qlf/cse25_abstracts.pdf
https://arxiv.org/abs/2506.00796
https://arxiv.org/abs/2506.00796
https://doi.org/10.1016/j.nima.2011.01.053
https://doi.org/10.1016/j.nima.2011.01.053
https://doi.org/10.21105/joss.08330
https://doi.org/10.21105/joss.08330

	Summary
	Background
	Statement of need
	Features
	Verification
	Acknowledgements
	References

