
ChemInformant: A Robust and Workflow-Centric
Python Client for High-Throughput PubChem Access
Zhiang He 1

1 Independent Researcher
DOI: 10.21105/joss.08341

Software
• Review
• Repository
• Archive

Editor: Evan Spotte-Smith
Reviewers:

• @cthoyt
• @LIVazquezS

Submitted: 14 April 2025
Published: 13 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
ChemInformant is a Python client for high-throughput, programmatic access to PubChem. It
streamlines automated data retrieval by converting large, mixed-type lists of chemical identifiers
directly into analysis-ready Pandas DataFrames (The pandas development team, 2025). To
ensure resilience, the package integrates persistent HTTP caching, automatic rate-limiting
with exponential backoff retries, and runtime data validation using Pydantic (Colvin & others,
2025). By addressing critical limitations in existing tools, such as network instability and
inefficient batch processing, ChemInformant offers up to a 48-fold performance increase in
batch retrieval compared to the widely-used PubChemPy library, providing a more reliable and
efficient component for the modern Python cheminformatics ecosystem.

Statement of Need
Automated cheminformatics workflows require robust and efficient data access, but researchers
face recurring challenges with existing PubChem clients. Network reliability is a primary concern.
The PubChem API (Kim et al., 2018) enforces dynamic rate limits, which can halt automated
scripts (National Center for Biotechnology Information, 2024). Many clients, like PubChemPy
(Swain, 2017), lack built-in request throttling, retries, or persistent caching, forcing users to
implement boilerplate code to handle network errors and redundant requests.

Batch processing is also often inefficient. Workflows with mixed-type identifiers (e.g., names
and CIDs) require manual pre-processing. Furthermore, a single invalid identifier in a large
batch can cause an entire query to fail without clear error reporting, hindering data acquisition
pipelines.

ChemInformant addresses these gaps by natively integrating these critical features. Its archi-
tecture provides built-in resilience and a workflow-centric design, allowing researchers to focus
on analysis rather than the low-level mechanics of data retrieval.

State of the Field and Comparison
To contextualize ChemInformant, its features were compared against related tools including
PubChemPy (Swain, 2017), PubChemR (Korkmaz et al., 2025), webchem (Szöcs et al., 2020),
ChemSpiPy (Swain, 2018), and PubChem4J (Southern & Griffin, 2011) (Table 1). The
maintenance status of some libraries is noteworthy; for instance, PubChemPy has not had a
formal release since 2017.

Table 1: Comparative analysis of key features in mainstream chemical information clients.

Key
Feature

ChemIn-
formant

Pub-
ChemPy

Pub-
ChemR webchem

Chem-
SpiPy

Pub-
Chem4J

Platform Python Python R R Python Java

He. (2025). ChemInformant: A Robust and Workflow-Centric Python Client for High-Throughput PubChem Access. Journal of Open Source
Software, 10(112), 8341. https://doi.org/10.21105/joss.08341.

1

https://orcid.org/0009-0009-0171-4578
https://doi.org/10.21105/joss.08341
https://github.com/openjournals/joss-reviews/issues/8341
https://github.com/HzaCode/ChemInformant
https://doi.org/10.5281/zenodo.16623785
https://espottesmith.github.io
https://orcid.org/0000-0003-1554-197X
https://github.com/cthoyt
https://github.com/LIVazquezS
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08341

Key
Feature

ChemIn-
formant

Pub-
ChemPy

Pub-
ChemR webchem

Chem-
SpiPy

Pub-
Chem4J

Primary
Database

PubChem PubChem PubChem Multi-DB ChemSpi-
der

PubChem

Persistent
Caching¹

Yes No No No No N/A

Rate-
Limiting &
Retries²

Yes No No Partial No N/A

Batch
Retrieval

Yes Partial Partial Partial Partial Yes

Mixed
Identifier
Support

Yes No No No No N/A

Fault
Tolerance³

Yes No No No No N/A

Automatic
Pagination

Yes Partial No No No N/A

Runtime
Type
Safety

Yes No Partial No No Yes

Project
Activity

Active Inactive Active Active Inactive Archived

Notes: ¹ Persistent Caching: Stores results locally to accelerate repeated queries. ² Rate-
Limiting & Retries: Manages API request limits and server errors for robust automation. ³
Fault Tolerance: Reports status per-item in batch queries, avoiding complete failure on single
errors.

Performance Evaluation
To quantify ChemInformant’s performance, a benchmark was performed to retrieve six properties
for 285 drug names. PubChemPy was selected as a baseline. Since PubChemPy’s batch interface
requires CIDs, all names were first resolved to CIDs. The performance of both libraries was
then timed on processing this list.

Table 2 summarizes the performance data for the 280 successfully resolved compounds.

Table 2: Performance benchmark results.

Scenario Time (s) Speed-up (vs. PubChemPy)
PubChemPy (batch interface) 6.50 1× (Baseline)
ChemInformant — Cold Cache 1.40 4.6×
ChemInformant — Warm Cache 0.135 48×

The initial ChemInformant batch query completed in 1.4 seconds, a 4.6-fold speed increase over
PubChemPy. A subsequent query from the cache finished in 135 milliseconds, a 48-fold speed-up
relative to the baseline. This sub-200ms response is suitable for interactive applications. The
benchmark script is available in the project repository.

Example Usage
ChemInformant offers a layered API for both single lookups and batch processing.

He. (2025). ChemInformant: A Robust and Workflow-Centric Python Client for High-Throughput PubChem Access. Journal of Open Source
Software, 10(112), 8341. https://doi.org/10.21105/joss.08341.

2

https://doi.org/10.21105/joss.08341

Convenience API Example (single lookup):

import ChemInformant as ci

Retrieve a single property for one identifier

cas_number = ci.get_cas("ibuprofen")

> '15687-27-1'

Core API Example (batch data analysis):

Retrieve multiple properties for a list of mixed-identifier types

df = ci.get_properties(

identifiers=["aspirin", "caffeine", 1983], # Mix of names and a CID

properties=["molecular_weight", "xlogp", "cas"]

)

The returned DataFrame is formatted for direct use

print(df)

A detailed user manual is available in the project repository.

Acknowledgements
The author thanks PubChem for providing open data services (Kim et al., 2023) and acknowl-
edges the developers of the open-source libraries upon which ChemInformant is built, including
requests, pandas (The pandas development team, 2025), pydantic (Colvin & others, 2025),
requests-cache (Haritonov & Cook, 2024), and pystow (Hoyt et al., 2025).

References
Colvin, S., & others. (2025). Pydantic (Version 2.11.7). Zenodo. https://doi.org/10.5281/

zenodo.15662245

Haritonov, R., & Cook, J. W. (2024). Requests-cache: Persistent HTTP cache for python
requests (Version 1.2.1). GitHub. https://github.com/requests-cache/requests-cache

Hoyt, C. T., Obraczka, D., Berrendorf, M., & Baird, S. G. (2025). Cthoyt/pystow: v0.7.1
(Version v0.7.1). Zenodo. https://doi.org/10.5281/zenodo.15720682

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen,
P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update.
Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956

Kim, S., Thiessen, P. A., Cheng, T., Yu, B., & Bolton, E. E. (2018). An update on PUG-REST:
RESTful interface for programmatic access to PubChem. Nucleic Acids Research, 46(W1),
W563–W570. https://doi.org/10.1093/nar/gky294

Korkmaz, S., Yamasan, B. E., & Goksuluk, D. (2025). PubChemR: An r client for the
PubChem API (Version 2.1.4). Comprehensive R Archive Network (CRAN). https://doi.
org/10.32614/CRAN.package.PubChemR

National Center for Biotechnology Information. (2024). PubChem programmatic access usage
policy. https://pubchem.ncbi.nlm.nih.gov/docs/programmatic-access

Southern, M. R., & Griffin, P. R. (2011). A java API for working with PubChem datasets.
Bioinformatics, 27 (5), 741–742. https://doi.org/10.1093/bioinformatics/btq715

Swain, M. (2017). PubChemPy v1.0.4 (Version 1.0.4). Zenodo. https://doi.org/10.5281/
zenodo.541438

Swain, M. (2018). ChemSpiPy: A python wrapper for the ChemSpider API (Version 2.0.0).
https://pypi.org/project/ChemSpiPy/2.0.0

He. (2025). ChemInformant: A Robust and Workflow-Centric Python Client for High-Throughput PubChem Access. Journal of Open Source
Software, 10(112), 8341. https://doi.org/10.21105/joss.08341.

3

https://doi.org/10.5281/zenodo.15662245
https://doi.org/10.5281/zenodo.15662245
https://github.com/requests-cache/requests-cache
https://doi.org/10.5281/zenodo.15720682
https://doi.org/10.1093/nar/gkac956
https://doi.org/10.1093/nar/gky294
https://doi.org/10.32614/CRAN.package.PubChemR
https://doi.org/10.32614/CRAN.package.PubChemR
https://pubchem.ncbi.nlm.nih.gov/docs/programmatic-access
https://doi.org/10.1093/bioinformatics/btq715
https://doi.org/10.5281/zenodo.541438
https://doi.org/10.5281/zenodo.541438
https://pypi.org/project/ChemSpiPy/2.0.0
https://doi.org/10.21105/joss.08341

Szöcs, E., Stirling, T., Scott, E. R., Scharmüller, A., & Schäfer, R. B. (2020). Webchem: An
r package to retrieve chemical information from the web. Journal of Statistical Software,
93(13), 1–17. https://doi.org/10.18637/jss.v093.i13

The pandas development team. (2025). Pandas-dev/pandas: pandas (Version 2.3.1). Zenodo.
https://doi.org/10.5281/zenodo.15831829

He. (2025). ChemInformant: A Robust and Workflow-Centric Python Client for High-Throughput PubChem Access. Journal of Open Source
Software, 10(112), 8341. https://doi.org/10.21105/joss.08341.

4

https://doi.org/10.18637/jss.v093.i13
https://doi.org/10.5281/zenodo.15831829
https://doi.org/10.21105/joss.08341

	Summary
	Statement of Need
	State of the Field and Comparison
	Performance Evaluation
	Example Usage
	Acknowledgements
	References

