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Summary
GraphCalc is a Python library for computing an extensive collection of graph-theoretic invariants,
designed to support research in combinatorics, network science, and automated reasoning. It
implements more than 100 exact functions, covering classical measures (e.g., independence
number, chromatic number, spectral radius) and many lesser-known invariants central to
extremal graph theory and domination theory.

Originally developed as the invariant engine for the automated conjecturing system TxGraffiti
(Davila, 2025a), GraphCalc has grown into a general-purpose research tool for constructing
large, structured datasets of graph invariants. These datasets—often organized into tabular
knowledge tables—enable symbolic pattern mining, hypothesis generation, and automated
conjecture discovery. For example:

>>> import graphcalc as gc

>>> graphs = [gc.cube_graph(), gc.octahedron_graph()]

>>> functions = ["order", "size", "spectral_radius", "independence_number"]

>>> gc.compute_knowledge_table(functions, graphs)

order size spectral_radius independence_number

0 8 12 3.0 4

1 6 12 4.0 2

While general-purpose libraries like NetworkX (Hagberg et al., 2008), igraph (Csárdi & Nepusz,
2006), and SageMath (The Sage Developers, 2020) provide broad graph functionality, they
rarely support the wide range of nonstandard invariants used in combinatorics. GraphCalc
fills this gap by offering exact implementations of many parameters unavailable elsewhere.
All functions are implemented exactly using integer programming, enumeration, or symbolic
methods. For NP-hard invariants (e.g., independence number, chromatic number, domination
variants), GraphCalc relies on mixed-integer programming models via PuLP (Mitchell et al.,
2011) and solvers such as COIN-OR CBC, ensuring exactness for small- to medium-sized graphs
where symbolic relationships are most visible.

By enabling high-resolution invariant datasets, GraphCalc complements automated conjecturing
systems like TxGraffiti and the Optimist (Davila, 2025b). These systems analyze numerical
patterns in GraphCalc’s output to generate new conjectures, many of which have already been
proven as theorems. GraphCalc serves as both a comprehensive toolkit for graph theorists and
a foundational component for symbolic discovery in modern mathematics.

Features
GraphCalc offers a robust suite of tools for computing, analyzing, and visualizing graph-
theoretic invariants. It combines an intuitive Python interface with solver-enhanced backends
and supports both NetworkX graph objects and internal SimpleGraph and related types—making
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it versatile for everyday use, educational settings, and advanced mathematical experimentation.
Key features include:

• Extensive invariant coverage: Compute a broad range of exact graph invariants, including
classical quantities such as chromatic, clique, vertex cover, and independence numbers, as
well as structural and degree-based invariants like residue, Slater number, and annihilation
number.

• Domination and forcing variants: Includes over a dozen domination-type parameters
(e.g., total, Roman, double Roman, restrained, outer-connected) and propagation-
based parameters such as zero forcing, positive semidefinite zero forcing, and k-power
domination. All are computed exactly using integer programming or exhaustive search.

• Spectral and structural analysis: Supports spectral computations, including adjacency
and Laplacian eigenvalues, spectral radius, and algebraic connectivity, along with Boolean
predicates for structural properties such as planarity, claw-freeness, triangle-freeness, and
subcubicity.

• Graph and polytope generators: Provides built-in generators for classical graphs and
convex 3D polytopes (e.g., tetrahedra, cubes, fullerenes)—useful for visualization, testing,
and conjecture exploration.

• Batch evaluation and knowledge tables: Enables the evaluation of multiple invariants
across entire graph collections using compute_knowledge_table (see previous section)
or all_properties.

• Visualization and user experience: Offers built-in rendering for graphs and polytopes, fully
type-annotated functions, extensive test coverage, and online documentation designed
to support both research and instructional use.

Example Usage
The GraphCalc package supports both single-graph queries and batch evaluation over collections
of graphs and polytopes (see the previous section). Below is a basic example using the Petersen
graph:

>>> import graphcalc as gc

>>> # Create the Petersen graph

>>> G = gc.petersen_graph()

>>> # Compute selected invariants

>>> gc.independence_number(G)

4

>>> gc.residue(G)

3

>>> gc.claw_free(G)

False

Relevance to Automated Discovery
Automated mathematical discovery has a rich history, dating back to symbolic logic programs
like Wang’s Program II in the 1950s (Wang, 1960), and advancing significantly with systems
such as Fajtlowicz’s Graffiti (Fajtlowicz, 1988) and DeLaViña’s Graffiti.pc (DeLaViña, 2005)
in the 1980s and 1990s. These pioneering systems demonstrated that computers could do
more than verify known mathematics—they could help generate it, particularly by formulating
conjectures grounded in patterns among graph invariants. Notably, Graffiti included its own
embedded module for computing such invariants, a design decision that enabled the system to
generate over 60 published conjectures, many appearing in top mathematical journals.
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GraphCalc continues this lineage. Originally developed as the internal invariant engine for the
TxGraffiti system, it served for years as a private computational backend before being released
as an open-source Python package. This decision was motivated by the growing interest in
AI-assisted mathematical reasoning and the desire to make a high-quality, extensible invariant
engine available for others to experiment with.

Today, GraphCalc powers the latest version of TxGraffiti and its agentic counterpart the
Optimist (Brimkov et al., 2024; Davila, 2025b), which analyze large families of graphs and
polytopes to discover symbolic conjectures. While not optimized for massive-scale network
analysis, GraphCalc excels in the domain where most mathematical conjectures are formed:
small to medium-sized graphs that are easily visualized and reasoned about. This design
philosophy echoes the foundational principles of Fajtlowicz’s original system, which emphasized
working with “small but interesting” graphs as fertile ground for discovery. By transforming
these structures into structured numerical profiles, GraphCalc enables automated systems to
detect symbolic patterns and formulate conjectures that are both novel and mathematically
meaningful.
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