
GraphCalc: A Python Package for Computing Graph
Invariants in Automated Conjecturing Systems
Randy Davila 1,2

1 RelationalAI, United States 2 Department of Computational Applied Mathematics & Operations
Research,Rice University, United States

DOI: 10.21105/joss.08383

Software
• Review
• Repository
• Archive

Editor: Christoph Junghans
Reviewers:

• @szhorvat
• @aadinoyiibrahim

Submitted: 30 May 2025
Published: 23 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
GraphCalc is a Python library for computing an extensive collection of graph-theoretic invariants,
designed to support research in combinatorics, network science, and automated reasoning. It
implements more than 100 exact functions, covering classical measures (e.g., independence
number, chromatic number, spectral radius) and many lesser-known invariants central to
extremal graph theory and domination theory.

Originally developed as the invariant engine for the automated conjecturing system TxGraffiti
(Davila, 2025a), GraphCalc has grown into a general-purpose research tool for constructing
large, structured datasets of graph invariants. These datasets—often organized into tabular
knowledge tables—enable symbolic pattern mining, hypothesis generation, and automated
conjecture discovery. For example:

>>> import graphcalc as gc

>>> graphs = [gc.cube_graph(), gc.octahedron_graph()]

>>> functions = ["order", "size", "spectral_radius", "independence_number"]

>>> gc.compute_knowledge_table(functions, graphs)

order size spectral_radius independence_number

0 8 12 3.0 4

1 6 12 4.0 2

While general-purpose libraries like NetworkX (Hagberg et al., 2008), igraph (Csárdi & Nepusz,
2006), and SageMath (The Sage Developers, 2020) provide broad graph functionality, they
rarely support the wide range of nonstandard invariants used in combinatorics. GraphCalc
fills this gap by offering exact implementations of many parameters unavailable elsewhere.
All functions are implemented exactly using integer programming, enumeration, or symbolic
methods. For NP-hard invariants (e.g., independence number, chromatic number, domination
variants), GraphCalc relies on mixed-integer programming models via PuLP (Mitchell et al.,
2011) and solvers such as COIN-OR CBC, ensuring exactness for small- to medium-sized graphs
where symbolic relationships are most visible.

By enabling high-resolution invariant datasets, GraphCalc complements automated conjecturing
systems like TxGraffiti and the Optimist (Davila, 2025b). These systems analyze numerical
patterns in GraphCalc’s output to generate new conjectures, many of which have already been
proven as theorems. GraphCalc serves as both a comprehensive toolkit for graph theorists and
a foundational component for symbolic discovery in modern mathematics.

Features
GraphCalc offers a robust suite of tools for computing, analyzing, and visualizing graph-
theoretic invariants. It combines an intuitive Python interface with solver-enhanced backends
and supports both NetworkX graph objects and internal SimpleGraph and related types—making

Davila. (2025). GraphCalc: A Python Package for Computing Graph Invariants in Automated Conjecturing Systems. Journal of Open Source
Software, 10(112), 8383. https://doi.org/10.21105/joss.08383.

1

https://orcid.org/0000-0002-0471-8744
https://doi.org/10.21105/joss.08383
https://github.com/openjournals/joss-reviews/issues/8383
https://github.com/RandyRDavila/GraphCalc
https://doi.org/10.5281/zenodo.16907645
https://www.compphys.de/
https://orcid.org/0000-0003-0925-1458
https://github.com/szhorvat
https://github.com/aadinoyiibrahim
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08383


it versatile for everyday use, educational settings, and advanced mathematical experimentation.
Key features include:

• Extensive invariant coverage: Compute a broad range of exact graph invariants, including
classical quantities such as chromatic, clique, vertex cover, and independence numbers, as
well as structural and degree-based invariants like residue, Slater number, and annihilation
number.

• Domination and forcing variants: Includes over a dozen domination-type parameters
(e.g., total, Roman, double Roman, restrained, outer-connected) and propagation-
based parameters such as zero forcing, positive semidefinite zero forcing, and k-power
domination. All are computed exactly using integer programming or exhaustive search.

• Spectral and structural analysis: Supports spectral computations, including adjacency
and Laplacian eigenvalues, spectral radius, and algebraic connectivity, along with Boolean
predicates for structural properties such as planarity, claw-freeness, triangle-freeness, and
subcubicity.

• Graph and polytope generators: Provides built-in generators for classical graphs and
convex 3D polytopes (e.g., tetrahedra, cubes, fullerenes)—useful for visualization, testing,
and conjecture exploration.

• Batch evaluation and knowledge tables: Enables the evaluation of multiple invariants
across entire graph collections using compute_knowledge_table (see previous section)
or all_properties.

• Visualization and user experience: Offers built-in rendering for graphs and polytopes, fully
type-annotated functions, extensive test coverage, and online documentation designed
to support both research and instructional use.

Example Usage
The GraphCalc package supports both single-graph queries and batch evaluation over collections
of graphs and polytopes (see the previous section). Below is a basic example using the Petersen
graph:

>>> import graphcalc as gc

>>> # Create the Petersen graph

>>> G = gc.petersen_graph()

>>> # Compute selected invariants

>>> gc.independence_number(G)

4

>>> gc.residue(G)

3

>>> gc.claw_free(G)

False

Relevance to Automated Discovery
Automated mathematical discovery has a rich history, dating back to symbolic logic programs
like Wang’s Program II in the 1950s (Wang, 1960), and advancing significantly with systems
such as Fajtlowicz’s Graffiti (Fajtlowicz, 1988) and DeLaViña’s Graffiti.pc (DeLaViña, 2005)
in the 1980s and 1990s. These pioneering systems demonstrated that computers could do
more than verify known mathematics—they could help generate it, particularly by formulating
conjectures grounded in patterns among graph invariants. Notably, Graffiti included its own
embedded module for computing such invariants, a design decision that enabled the system to
generate over 60 published conjectures, many appearing in top mathematical journals.

Davila. (2025). GraphCalc: A Python Package for Computing Graph Invariants in Automated Conjecturing Systems. Journal of Open Source
Software, 10(112), 8383. https://doi.org/10.21105/joss.08383.

2

https://doi.org/10.21105/joss.08383


GraphCalc continues this lineage. Originally developed as the internal invariant engine for the
TxGraffiti system, it served for years as a private computational backend before being released
as an open-source Python package. This decision was motivated by the growing interest in
AI-assisted mathematical reasoning and the desire to make a high-quality, extensible invariant
engine available for others to experiment with.

Today, GraphCalc powers the latest version of TxGraffiti and its agentic counterpart the
Optimist (Brimkov et al., 2024; Davila, 2025b), which analyze large families of graphs and
polytopes to discover symbolic conjectures. While not optimized for massive-scale network
analysis, GraphCalc excels in the domain where most mathematical conjectures are formed:
small to medium-sized graphs that are easily visualized and reasoned about. This design
philosophy echoes the foundational principles of Fajtlowicz’s original system, which emphasized
working with “small but interesting” graphs as fertile ground for discovery. By transforming
these structures into structured numerical profiles, GraphCalc enables automated systems to
detect symbolic patterns and formulate conjectures that are both novel and mathematically
meaningful.

Acknowledgements
The authors thank David Amos and Boris Brimkov for their foundational support during the
development of GraphCalc and its predecessors. We also thank the referees for their valuable
feedback, which greatly improved the clarity, functionality, and overall quality of both the
library and this paper.

References
Brimkov, B., Davila, R., Schuerger, H., & Young, M. (2024). On a conjecture of TxGraffiti:

Relating zero forcing and vertex covers in graphs. Discret. Appl. Math., 359, 290–302.
https://doi.org/10.1016/j.dam.2024.08.006

Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal Complex Systems, 1695. https://doi.org/10.5281/zenodo.3630268

Davila, R. (2025a). Automated conjecturing in mathematics with TxGraffiti. https://doi.org/
10.48550/arXiv.2409.19379

Davila, R. (2025b). The optimist: Towards fully automated graph theory research. https:
//doi.org/10.48550/arXiv.2411.09158

DeLaViña, E. (2005). Graffiti.pc: A variant of Graffiti. In Graphs and discovery (Vol. 69, pp.
71–88). American Mathematical Society. https://doi.org/10.1090/dimacs/069/05

Fajtlowicz, S. (1988). On conjectures of Graffiti. Discrete Mathematics, 72(1), 113–118.
https://doi.org/10.1016/0012-365X(88)90199-9

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th python in science conference (SciPy2008) (pp. 11–15). https://doi.org/10.
25080/TCWV9851

Mitchell, S., Dunning, I., & O’Sullivan, M. (2011). PuLP: A linear programming toolkit for
Python. Optimization Online. https://optimization-online.org/2011/09/3178/

The Sage Developers. (2020). SageMath, the Sage Mathematics Software System (Version
9.1). https://doi.org/10.5281/zenodo.4066866

Wang, H. (1960). Toward mechanical mathematics. IBM Journal of Research and Development,
4(1), 2–22. https://doi.org/10.1147/rd.41.0002

Davila. (2025). GraphCalc: A Python Package for Computing Graph Invariants in Automated Conjecturing Systems. Journal of Open Source
Software, 10(112), 8383. https://doi.org/10.21105/joss.08383.

3

https://doi.org/10.1016/j.dam.2024.08.006
https://doi.org/10.5281/zenodo.3630268
https://doi.org/10.48550/arXiv.2409.19379
https://doi.org/10.48550/arXiv.2409.19379
https://doi.org/10.48550/arXiv.2411.09158
https://doi.org/10.48550/arXiv.2411.09158
https://doi.org/10.1090/dimacs/069/05
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.25080/TCWV9851
https://doi.org/10.25080/TCWV9851
https://optimization-online.org/2011/09/3178/
https://doi.org/10.5281/zenodo.4066866
https://doi.org/10.1147/rd.41.0002
https://doi.org/10.21105/joss.08383

	Summary
	Features
	Example Usage
	Relevance to Automated Discovery
	Acknowledgements
	References

