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Summary
Tesseracts are universal software components for scientific computing, simulation, and machine
learning (ML), summarized as “simulation intelligence” (SI) (Lavin et al., 2021). Specifically,
Tesseracts enable and expedite the transition from experimental, research-grade software to
production environments. This includes native support for automatic differentiation between
heterogeneous software artifacts in distributed and cloud contexts, which enables end-to-end
differentiable programming, hybrid ML and simulation systems, and more for SI at scale.

Tesseract Core is a Python library that serves as the reference implementation for defining,
containerizing, executing, and deploying Tesseract components. It provides user entry points
to wrap existing software artifacts such as Python functions, Julia code, C++ libraries, or
remote services into Tesseract components. By unambiguously defining allowed inputs and
outputs of each Tesseract via Pydantic models (Colvin et al., 2025), Tesseract Core enables
external data validation and auto-generation of machine-readable API schemas. This allows
users to explore the capabilities of Tesseract components without interacting with code, and
enables workflow engines to compose them into larger, self-validating pipelines that are, by
the virtue of implementing Tesseracts, end-to-end differentiable. Tesseract components are
built to be deployed in distributed contexts, including support for containerization and remote
procedure calls (RPC) via network.

Statement of need
The last few years have seen a rapid increase in the use of machine learning and data-driven
methods within scientific computing and industrial simulation. However, when moving beyond
the research lab and into real-world engineering workflows, the gap between (GPU-accelerated,
autodiff-native, high-level, bare-bones) research code and (CPU-bound, non-differentiable,
low-level, feature-rich) production code is often too large to bridge. Similar issues arise when
integrating components of different software stacks (e.g., Python, Julia, C++), and when
deploying components in heterogeneous or distributed environments (e.g., cloud vs. on-prem,
high-performance computing (HPC), and supercomputers).

These software bottlenecks translate to significant untapped potential of differentiable pro-
gramming in particular and simulation intelligence in general—for example, when exploring the
merits of hybrid AI-simulator systems in differentiable physics contexts (Avila Belbute-Peres et
al., 2018; Kochkov et al., 2024; Um et al., 2020), or when using machine learning to augment
existing simulation codes (Freitas et al., 2024; Shankar et al., 2025).

Tesseract Core remediates these bottlenecks and elevates integration possibilities by acting as
glue between several user groups (Figure 1):
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Figure 1: Creating, deploying, and using Tesseracts through the lens of various user groups.

1. Researchers building multi-component systems and experiment pipelines: Tesseract Core
provides consistent interfaces to interact with any Tesseract component in the same
way. This allows users to discover and download existing Tesseract containers, lowering
the bar for researchers to experiment with many different components when developing
systems rather than single operations.

2. R&D software engineers building research tools and packaging them: Tesseracts are
defined via a Python-based interface with minimal configuration. Users specify in-
put/output schemas for each Tesseract, enabling transparent I/O validation, automatic
differentiation, and remote execution behind a unified interface. Tesseract Core provides
the tools to validate and build Docker containers from Tesseract definitions.

3. Platform and HPC engineers building SI workloads at scale: Tesseracts can be executed in
any environment that supports the Tesseract runtime. This allows them to be embedded
into virtually any orchestration framework and executed on bare metal, in the cloud,
or on compute clusters. Tesseracts expose their input/output schemas according to
the machine-readable OpenAPI format, facilitating automated integration into external
workflows engines.

This is a markedly different scope than what is found in existing software solutions, which
typically focus on a single aspect of the problem space—such as containerization (e.g.,
Docker, Singularity), remote procedure calls (e.g., gRPC), automatic differentiation (e.g., JAX,
PyTorch), and container orchestration (e.g., Kubernetes, Docker Compose)—or are geared
towards specific use cases, like Gymnasium (Brockman et al., 2016) for reinforcement learning,
or UM-Bridge (Seelinger et al., 2023) for probabilistic programming and HPC. Tesseract Core
aims to unify the most valuable parts of these aspects into a single, coherent ecosystem that
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makes it easy to use and deploy SI methods across different environments.

Concretely, Tesseract Core addresses many of the fundamental issues that arise when building
real-world SI systems, including but not limited to:

• Code sharing – How do I make my research-grade simulation code available to other
users who are not familiar with the codebase?

• Reproducibility – How can I ensure that my simulation code is executed in a consistent
and reproducible manner, regardless of the environment?

• Streamlined experimentation – How can I experiment with different 3rd party simula-
tors, differentiable meshing routines, or ML models without having to install all their
dependencies or study their documentation in depth?

• Dependency management – How do I resolve conflicts between different software or
hardware requirements of components working together in a pipeline?

• Remote execution – How do I execute my SciML software on a cloud VM and query it
from my local machine?

• Explicit interfaces – How do I discover at a glance which parameters of a software
branded as “differentiable simulator” are differentiable and which are not?

• Distributed differentiable programming – How do I propagate gradients end-to-end
through complex pipelines mixing torch, JAX, and Julia code?

Specific end-to-end examples that leverage the Tesseract ecosystem to address these issues in
research and engineering settings are highlighted and continuously published in the Tesseract
community showcase.

Software design

Figure 2: The make-up of a Tesseract highlighting its external and internal interfaces.

A Tesseract is any object that is served behind the Tesseract runtime, which ships with
Tesseract Core and bundles a command-line interface (CLI), Python API, and REST API. Each
of these external interfaces maps to the same internal code path, which ultimately invokes a
tesseract_api.py Python module, provided by the Tesseract creator (Figure 2).

The structure of tesseract_api.py (and thus the Tesseract interface itself) is centered
around a functional programming style without internal state. Specifically, this means that
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each Tesseract is assumed to wrap a single operation (apply) that takes a set of (arbitrarily
nested) inputs and produces a set of outputs. All other Tesseract endpoints like jacobian,
abstract_eval, or vector_jacobian_product represent transformations of the apply function.
This is strongly inspired by JAX primitives (Bradbury et al., 2018), and enables the efficient
use of automatic differentiation (AD) techniques such as reverse-mode AD and forward-mode
AD (Ma et al., 2021), invoked manually or through existing AD engines (Figure 3).

Figure 3: Example data flow through a Tesseract-driven compute pipeline, both during forward application
and reverse-mode AD. When using a Tesseract-aware AD engine, implementation details of Tesseract
endpoints (such as apply vs. vector_jacobian_product) are hidden from the user.

These methods and the myriad scenarios in which they can be applied continue to be real-
world validated in diverse scientific contexts, engineering physics applications, and industrial
simulation environments. Progress in these areas and more can be found in the Tesseract
open-source community, at https://si-tesseract.discourse.group.
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