The Journal of Open Source Software

DOI: 10.21105/joss.08388

Software
= Review 7
= Repository &
= Archive 7

Editor: Mojtaba Barzegari &0
Reviewers:

= @gtheler

= Qthelfer

= Q@hvonwah

Submitted: 08 April 2025
Published: 12 February 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Ratel: Performance portable solid mechanics with
libCEED and PETSc

Zachary R. Atkins © !, Jed Brown
Ghaffari ©!, Zachariah T. Irwin
and Jeremy L Thompson ® '

1 Fabio Di Gioacchino

! Layla
1 Rezgar Shakeri 1

!, Karen Stengel © 1!,

1 University of Colorado at Boulder

Summary

Ratel is a solid mechanics library and applications based on libCEED (Abdelfattah, Barra,
Beams, Brown, et al., 2021; Brown et al., 2021) and PETSc (Balay et al., 2025; Zhang et al.,
2021) with support for efficient high-order elements and CUDA and ROCm GPUs.

Solid mechanics simulations provide vital information for many engineering applications, using
a large amount of computational resources from workstation to supercomputing scales. The
industry standard for implicit analysis uses assembled sparse matrices with low-order elements,
typically @); hexahedral and P, tetrahedral elements, with the linear systems solved using
sparse direct solvers, algebraic multigrid, or multilevel domain decomposition. This approach
has two fundamental inefficiencies: poor approximation accuracy per Degree of Freedom (DoF)
and high computational and memory cost per DoF due to choice of data structures and
algorithms. High-order finite elements implemented in a matrix-free fashion with appropriate
preconditioning strategies can overcome these inefficiencies. Integrating more efficient data
structures and algorithms into solid mechanics software libraries can greatly improve engineering
workflows and allow users to better utilize their computational resources while new technologies
like Automatic Differentiation can be used to shorten development time.

State of the field

Most finite element method (FEM) software packages for implicit analysis have limited
performance due to the centrality of assembled sparse matrices, which limit performance to less
than 2% of peak floating-point operations per second (FLOPs) due to low arithmetic intensity
(FLOP per byte of memory transferred from memory) (Williams et al., 2009), rendering
performance limited by memory bandwidth. Modern hardware architectures, including GPUs,
favor algorithms with an intensity of 10 FLOP /byte or more (Rupp, 2020), while sparse matrices
have intensities of less than 0.25 FLOP /byte. Matrix-free methods deliver higher performance
than assembled matrices at both high- and low-order (Abdelfattah, Barra, Beams, Bleile, et al.,
2021; Brown et al., 2022; Kolev et al., 2021; May et al., 2014). Additionally, users who want
to run their applications on High Performance Computers (HPC) are limited by the underlying
requirement to write backend (hardware) specific code since different chips have different
libraries needed to interface with the hardware; for example, NVIDIA devices require the use of
CUDA (2025) while AMD GPUs require HIP (2025). Users who wish to run their code on
different hardware must take the time to ensure that their code is compatible with all of the
targeted hardware, significantly increasing code development time.

MFEM (Anderson et al., 2021) and deal.ii (Arndt et al., 2021) are two libraries with some
comparable features. In contrast to MFEM, Ratel does not currently offer the ability for users

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 1
https://doi.org/10.21105/joss.08388.

https://orcid.org/0000-0002-2491-0725
https://orcid.org/0000-0002-9945-0639
https://orcid.org/0000-0003-2056-1510
https://orcid.org/0000-0002-0965-214X
https://orcid.org/0000-0003-0832-9807
https://orcid.org/0000-0003-4790-7016
https://orcid.org/0000-0002-8764-9122
https://orcid.org/0000-0003-2980-0899
https://doi.org/10.21105/joss.08388
https://github.com/openjournals/joss-reviews/issues/8388
https://gitlab.com/micromorph/ratel
https://doi.org/10.5281/zenodo.18509304
http://mbarzegary.github.io/
https://orcid.org/0000-0002-1456-0610
https://github.com/gtheler
https://github.com/thelfer
https://github.com/hvonwah
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

to customize the formulation of the material models past the parameters; however, Ratel offers
a growing material point method capability and focuses on delivering high performance with
libCEED's code generation GPU backends. In contrast to deal.ii, Ratel uses C99 and code
generation for performance over C++ templates, in an effort to provide error messages that
are easier to debug. Also, Ratel has more robust and mature GPU support than deal.ii.

Abaqus (Abaqus, 2025) is another widely used commercial package with comparable features.
Developing constitutive models requires tensor derivatives of nonlinear scalar functions. In
Abaqus, extensions through UMAT or UHYPER interfaces are typically implemented via manual
derivation and coding of these derivatives, following solver-specific conventions that can be
error-prone and, in some cases, lead to instabilities (Shakeri et al., 2024). While it is possible to
integrate external automatic differentiation (AD) tools such as Enzyme or ADOL-C into UMAT
implementations, doing so generally requires additional setup and expertise. However, Ratel
addresses this by leveraging AD to compute exact derivatives directly from a nonlinear strain
energy function, providing first derivatives for constitutive modeling and second derivatives for
the consistent tangent.

Statement of need

Ratel is a solid mechanics library that provides material models and boundary conditions
that utilize the high-order matrix-free capabilities of libCEED (Abdelfattah, Barra, Beams,
Brown, et al., 2021; Brown et al., 2021) and the linear and non-linear solvers from PETSc
(Balay et al., 2025; Zhang et al., 2021). Ratel supports both FEM and implicit material point
method (iIMPM) implementations (Coombs et al., 2020; Moresi et al., 2003), allowing users
to select their method of choice at run-time. Ratel has an extensible materials library that
includes finite-strain hyperelastic, elastoplastic, viscoelastic, poroelastic, and fracture models,
including stable mixed formulations for near-incompressible regimes. These models are written
in C99 and only contain code syntax also supported by CUDA and HIP. Because libCEED lets
users write hardware-agnostic code, Ratel users can run solid mechanics simulations with any
libCEED-supported backend, selecting between CPUs or GPUs at runtime.

Ratel users can take advantage of all the packages and algorithms supported by PETSc,
including Hypre (Falgout et al., 2021) and Kokkos (Trott et al., 2022). Ratel accepts runtime
arguments as command-line flags and/or YAML format, providing users the flexibility to use
different libCEED backends, PETSc solvers and preconditioners, or Ratel material models
easily. The performance benefits of Ratel's approach to solid mechanics are explored in Brown
et al. (2022).

Concepts and interface

The role of Ratel is to properly set up a PETSc domain management (DM) object representing
the mesh for the user's prescribed solid mechanics simulation and create the libCEED operators
to compute the non-linear residual evaluations for PETSc time-steppers (TS) and non-linear
solvers (SNES) as well as the Jacobian evaluations for PETSc linear solvers (KSP), as well as any
ancillary operators for solution postprocessing. libCEED provides performant implementations
of these operators on the targeted hardware (Figure 1). These libCEED operators are attached
to the DM's non-linear solver context (DMSNES) or time-stepper context (DMTS) which configures
the user's selected solver with the appropriate function callbacks to run the user’'s simulation.

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 2
https://doi.org/10.21105/joss.08388.

https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

Application Library Backends Hardware
Pure C \
AVX CPU
LIBXSMM /
Ratel libCEED CUDA — NVIDIA GPU
HIP AMD GPU
SYCL Intel GPU
MAGMA

Figure 1: Runtime backend options for libCEED

Ratel currently only uses Continuous Galerkin finite elements; however other types of finite
elements supported by PETSc and libCEED could be added in the future.

Ratel is organized around RatelMaterial objects, separate material regions in the domain
(Figure 2). Each RatelMaterial is responsible for adding volumetric terms to the residual
and Jacobian operators as well as any surface terms that require volumetric or material
model values. Additionally, each RatelMaterial is responsible for building and configuring
corresponding preconditioner components, as needed. Users can configure RatelMaterials at
runtime, identifying the material parameters and mesh regions on which to apply use each
material.

Boundary and forcing terms that do not require volumetric or material model parameters, such
as Dirichlet boundary conditions, are handled separately from RatelMaterial. RatelBoundary
objects can also be specified at runtime.

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 3
https://doi.org/10.21105/joss.08388.

https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

DMSNES/DMTS

—

Residual Jacobian
Setup by RatelSolverType

o

[[JRatelMaterial [JrRatelMaterial B RatelBoundary

Figure 2: Ratel interface design

Material models and boundary conditions

Similar to other FEM packages, Ratel provides users with several material models to use
in simulations such as linear elasticity, Hencky, neo-Hookean, Mooney-Rivlin, and Ogden
hyperelasticity models (Holzapfel, 2000; Hughes, 2012), available in both compressible and
incompressible limits. These models are written in a numerically stable way (Shakeri et al.,
2024) to improve accuracy by reducing floating-point errors. In addition to the elasticity
models, Ratel material development can be broken up into three main categories: matrix-
free implementations of complex material models, the use of AD to simplify material model
implementation, and MPM versions of material models.

Advanced material models in Ratel include a phase-field model for brittle fracture with AT1
and AT2 damage (Amor et al., 2009; Miehe et al., 2010; Tanné et al., 2018), linear and finite
strain von Mises plasticity (Eterovic & Bathe, 1990; Weber & Anand, 1990), and both linear
(Biot's) (Cheng, 2016; Ding et al., 2013) and finite strain (Irwin et al., 2024) poroelasticity
models. Ratel supports running simulations with multiple material models on different regions
of a mesh.

There is also ongoing research around incorporating AD tools such as Enzyme (W. S. Moses
et al., 2021; W. Moses & Churavy, 2020) and ADOL-C (Walther & Griewank, 2012) into the
material model development pipeline. AD allows the user to avoid the time-consuming and
error-prone process of calculating complex derivatives by hand for the Jacobians. There are
several existing examples in Ratel demonstrating the use of both Enzyme and ADOL-C for
hyperelastic material models, with ongoing work towards an AD plasticity model.

Finally, Ratel has an iMPM implementation, based on Coombs et al. (2020) and Moresi et al.
(2003), with iMPM versions of the neo-Hookean and damage material models. Like the FEM
material models, the iMPM material models utilize the libCEED interface, allowing iMPM
simulations to be run on any libCEED-supported architecture, including AMD and NVIDIA
GPUs.

Ratel also provides several boundary conditions. Ratel offers two main forms of Dirichlet or

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 4
https://doi.org/10.21105/joss.08388.

https://doi.org/10.21105/joss.08388

SS

The Journal of Open Source Software

essential boundaries, clamp and slip. Clamp boundary conditions are displacement-specific and
constrain the entire displacement field on the face; the constrained values specify linear and
rotational displacement on the face at a given point in time. Slip boundary conditions are a
more general option, allowing for individual components of a field to have values prescribed.
Slip boundaries allow for the specification of symmetry or linearly interpolated values.

Traction (Neumann) boundary conditions, which apply external forces on a surface are supported.
Pressure boundary conditions from liquids or gases acting on the surface of the solid structure
are also supported, with the load depending on the current deformation state. Finally, Ratel
supports contact boundary conditions with rigid obstacles using Nitsche's method (Mlika,
2018) either frictionless or with Coulomb or Threlfall friction models (Marques et al., 2016).
These boundary conditions are configured via command line options and may be time varying.

Examples

Ratel is a library that can be integrated into existing applications and also provides driver
applications for static, quasistatic, and dynamic simulation and analysis. Here, we
demonstrate some example simulations using these drivers.

The first example is a coarse quasistatic simulation of a compressive shear test for a generic
brittle material. It employs the AT2 phase-field model in a monolithic scheme, incorporating
damage viscous regularization and adaptive time-stepping. This example highlights Ratel’s
capability to handle advanced material models in non-trivial loading conditions.

bin/ratel-quasistatic -options_file examples/ymls/ex02/1inear-damage-compressiveshear-
AT2-face-forces.yml

Force

Residual

| stiffness

Displacement

Figure 3: Output from the compressive shear test example showing the force-displacement curve with
phase field results for damage at selected amounts of applied strain.

The second example is a quasistatic iMPM simulation of a cylinder with a dense high-modulus
inclusion surrounded by a low-density low-modulus near-incompressible “foam” (Figure 4).

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. b
https://doi.org/10.21105/joss.08388.

https://doi.org/10.21105/joss.08388

SS

The Journal of Open Source Software

This simulation demonstrates Ratel's ability to handle mixed materials and curved geometry as
well as the iMPM simulation capability. Note that for the iMPM simulation there is no mesh
deformation like there is in FEM simulations since only the particles move in iMPM.

bin/ratel-quasistatic -options_file examples/ymls/ex02/mpm-neo-hookean-damage-
current-sinker-cylinder.yml

iMPM - mesh & particles iMPM - particles FEM - mesh 0.099

0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.73

Figure 4: Output from the sinker example showing iIMPM mesh with particles overlaid, iMPM particles,
and the equivalent mesh with FEM.

Displacement, z (m)

The next example is a dynamic simulation of 8 Schwarz-P cells with an applied traction force
creating pendulum-like motion (Figure 5). Schwarz-P meshes are especially helpful in studying
solver and preconditioner robustness and scaling.

bin/ratel-dynamic -options_file examples/ymls/ex03/schwarz-pendulum-enzyme.yml

time = 17s time = 40s time = 1330s

von Mises Stress (Pa)

Figure 5: Example time steps from the dynamic pendulum simulation using the Enzyme implementation
of the neo-Hookean model.

Acknowledgements

This research is supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under contract DE-AC02-06CH11357 and Award
Number DE-SC0016140. The authors acknowledge support by the Department of Energy,
National Nuclear Security Administration, Predictive Science Academic Alliance Program
(PSAAP) under Award Number DE-NA0003962.

References

Abaqus. (2025). https://www.3ds.com/products/simulia/abaqus

Abdelfattah, A., Barra, V., Beams, N., Bleile, R., Brown, J., Camier, J.-S., Carson, R.,
Chalmers, N., Dobrev, V., Dudouit, Y., Fischer, P., Karakus, A., Kerkemeier, S., Kolev,

Atkins et al. (2026). Ratel: Performance portable solid mechanics with [ibCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 6
https://doi.org/10.21105/joss.08388.

https://www.3ds.com/products/simulia/abaqus
https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

T., Lan, Y.-H., Merzari, E., Min, M., Phillips, M., Rathnayake, T., .. Weiss, K. (2021).
GPU algorithms for efficient exascale discretizations. Parallel Computing, 108, 102841.
https://doi.org/10.1016/].parco.2021.102841

Abdelfattah, A., Barra, V., Beams, N., Brown, J., Camier, J.-S., Dobrev, V., Dudouit, Y.,
Ghaffari, L., Kolev, T., Medina, D., Pazner, W., Rathnayake, T., Thompson, J. L., &
Tomov, S. (2021). libCEED user manual (Version 0.8). Zenodo. https://doi.org/10.5281/
zenodo.4895340

Amor, H., Marigo, J.-J., & Maurini, C. (2009). Regularized formulation of the variational
brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics
and Physics of Solids, 57(8), 1209-1229. https://doi.org/10.1016/j.jmps.2009.04.011

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Cerveny, J., Dobrev, V.,
Dudouit, Y., Fisher, A., Kolev, T., Pazner, W., Stowell, M., Tomov, V., Akkerman, |.,
Dahm, J., Medina, D., & Zampini, S. (2021). MFEM: A Modular Finite Element Methods
Library. Computers & Mathematics with Applications, 81, 42-74. https://doi.org/10.
1016/j.camwa.2020.06.009

Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier,
M., Pelteret, J.-P., Turcksin, B., & Wells, D. (2021). The deal.ll finite element library:
Design, features, and insights. Computers & Mathematics with Applications, 81, 407-422.
https://doi.org/10.1016 /j.camwa.2020.02.022

Balay, S., Abhyankar, S., Adams, M. F., Bensor, S., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac,
T., Jolivet, P., Dmitry Karpeyev, and, Kaushik, D., Knepley, M. G., Kong, F., .. Zang, J.
(2025). PETSc users manual (ANL-95/11 - Revision 3.23). Argonne National Laboratory.
https://doi.org/10.2172 /2476320

Brown, J., Abdelfattah, A., Barra, V., Beams, N., Camier, J.-S., Dobrev, V., Dudouit, Y.,
Ghaffari, L., Kolev, T., Medina, D., Pazner, W., Ratnayaka, T., Thompson, J., & Tomov,
S. (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of
Open Source Software, 6(63), 2945. https://doi.org/10.21105/joss.02945

Brown, J., Barra, V., Beams, N., Ghaffari, L., Knepley, M., Moses, W., Shakeri, R., Stengel,
K., Thompson, J. L., & Zhang, J. (2022). Performance portable solid mechanics via
matrix-free p-multigrid. arXiv. https://doi.org/10.48550/ARXIV.2204.01722

Cheng, A. (2016). Poroelasticity. Springer Cham. https://doi.org/10.1007/978-3-319-25202-5

Coombs, W. M., Augarde, C. E., Brennan, A. J., Brown, M. J., Charlton, T. J., Knappett, J.
A., Ghaffari Motlagh, Y., & Wang, L. (2020). On lagrangian mechanics and the implicit
material point method for large deformation elasto-plasticity. Computer Methods in Applied
Mechanics and Engineering, 358, 112622. https://doi.org/10.1016/j.cma.2019.112622

CUDA. (2025). https://developer.nvidia.com/about-cuda

Ding, B., Cheng, A. H.-D., & Chen, Z. (2013). Fundamental solutions of poroelastodynamics
in frequency domain based on wave decomposition. Journal of Applied Mechanics, 80(6),
061021. https://doi.org/10.1115/1.4023692

Eterovic, A. L., & Bathe, K.-J. (1990). A hyperelastic-based large strain elasto-plastic
constitutive formulation with combined isotropic-kinematic hardening using the logarithmic
stress and strain measures. International Journal for Numerical Methods in Engineering,
30(6), 1099-1114. https://doi.org/10.1002/nme.1620300602

Falgout, R. D., Li, R., Sjégreen, B., Wang, L., & Yang, U. M. (2021). Porting hypre to
heterogeneous computer architectures: Strategies and experiences. Parallel Computing,
108, 102840. https://doi.org/10.1016/j.parco.2021.102840

HIP. (2025). https://rocmdocs.amd.com/en/latest/what-is-rocm.html

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 7
https://doi.org/10.21105/joss.08388.

https://doi.org/10.1016/j.parco.2021.102841
https://doi.org/10.5281/zenodo.4895340
https://doi.org/10.5281/zenodo.4895340
https://doi.org/10.1016/j.jmps.2009.04.011
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.2172/2476320
https://doi.org/10.21105/joss.02945
https://doi.org/10.48550/ARXIV.2204.01722
https://doi.org/10.1007/978-3-319-25202-5
https://doi.org/10.1016/j.cma.2019.112622
https://developer.nvidia.com/about-cuda
https://doi.org/10.1115/1.4023692
https://doi.org/10.1002/nme.1620300602
https://doi.org/10.1016/j.parco.2021.102840
https://rocmdocs.amd.com/en/latest/what-is-rocm.html
https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

Holzapfel, G. (2000). Nonlinear solid mechanics: A continuum approach for engineering. Wiley.
ISBN: 978-0-471-82319-3

Hughes, T. J. (2012). The finite element method: Linear static and dynamic finite element
analysis. Courier Corporation. https://doi.org/10.1016,/0045-7825(87)90013-2

Irwin, Z. T., Clayton, J. D., & Regueiro, R. A. (2024). A large deformation multiphase
continuum mechanics model for shock loading of soft porous materials. International Journal
for Numerical Methods in Engineering, 125(6), e7411. https://doi.org/10.1002/nme.7411

Kolev, T., Fischer, P., Min, M., Dongarra, J., Brown, J., Dobrev, V., Warburton, T.,
Tomov, S., Shephard, M. S., Abdelfattah, A., Barra, V., Beams, N., Camier, J.-S.,
Chalmers, N., Dudouit, Y., Karakus, A., Karlin, |., Kerkemeier, S., Lan, Y.-H., ..
Tomov, V. (2021). Efficient exascale discretizations: High-order finite element methods.
International Journal of High Performance Computing Applications. https://doi.org/10.
1177/10943420211020803

Marques, F., Flores, P., Pimenta Claro, J. C., & Lankarani, H. M. (2016). A survey and
comparison of several friction force models for dynamic analysis of multibody mechanical
systems. Nonlinear Dynamics, 86(3), 1407—-1443. https://doi.org/10.1007/s11071-016-
2999-3

May, D. A, Brown, J., & Pourhiet, L. L. (2014). pTatin3D: High-performance methods for
long-term lithospheric dynamics. Proceedings of SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis. https://doi.org/10.1109/SC.
2014.28

Miehe, C., Hofacker, M., & Welschinger, F. (2010). A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits. Computer
Methods in Applied Mechanics and Engineering, 199(45-48), 2765-2778. https://doi.org/
10.1016/j.cma.2010.04.011

Mlika, R. (2018). Nitsche method for frictional contact and self-contact: Mathematical and
numerical study [PhD thesis, Université de Lyon]. https://theses.hal.science/tel-02067118

Moresi, L., Dufour, F., & Miihlhaus, H.-B. (2003). A lagrangian integration point finite
element method for large deformation modeling of viscoelastic geomaterials. Journal of
Computational Physics, 184(2), 476-497. https://doi.org/10.1016,/50021-9991(02)00031-
1

Moses, W. S., Churavy, V., Paehler, L., Hiickelheim, J., Narayanan, S. H. K., Schanen, M.,
& Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization of GPU
kernels via enzyme. Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. https://doi.org/10.1145/3458817.3476165

Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. Advances in Neural Information Processing Systems
(NeurlPS), 33, 12472-12485.

Rupp, K. (2020). CPU-GPU-MIC comparision charts. https://github.com /karlrupp/cpu-gpu-
mic-comparison

Shakeri, R., Ghaffari, L., Thompson, J. L., & Brown, J. (2024). Stable numerics for finite-strain
elasticity. International Journal for Numerical Methods in Engineering, 125(21), e7563.
https://doi.org/10.1002/nme.7563

Tanné, E., Li, T., Bourdin, B., Marigo, J.-J., & Maurini, C. (2018). Crack nucleation in
variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of
Solids, 110, 80-99. https: //doi.org/10.1016/j.jmps.2017.09.006

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri,
R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D.,

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 8
https://doi.org/10.21105/joss.08388.

https://doi.org/10.1016/0045-7825(87)90013-2
https://doi.org/10.1002/nme.7411
https://doi.org/10.1177/10943420211020803
https://doi.org/10.1177/10943420211020803
https://doi.org/10.1007/s11071-016-2999-3
https://doi.org/10.1007/s11071-016-2999-3
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1016/j.cma.2010.04.011
https://doi.org/10.1016/j.cma.2010.04.011
https://theses.hal.science/tel-02067118
https://doi.org/10.1016/S0021-9991(02)00031-1
https://doi.org/10.1016/S0021-9991(02)00031-1
https://doi.org/10.1145/3458817.3476165
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://doi.org/10.1002/nme.7563
https://doi.org/10.1016/j.jmps.2017.09.006
https://doi.org/10.21105/joss.08388

The Journal of Open Source Software

Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., & Wilke, J.
(2022). Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions
on Parallel and Distributed Systems, 33(4), 805-817. https://doi.org/10.1109/TPDS.
2021.3097283

Walther, A., & Griewank, A. (2012). Getting started with ADOL-c. Computing in Science &
Engineering, 14(6), 20-29. https://doi.org/10.1201/b11644-8

Weber, G., & Anand, L. (1990). Finite deformation constitutive equations and a time
integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer Methods
in Applied Mechanics and Engineering, 79(2), 173-202. https://doi.org/10.1016/0045-
7825(90)90131-5

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: An insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4), 65-76. https:
//doi.org/10.1145/1498765.1498785

Zhang, J., Brown, J., Balay, S., Faibussowitsch, J., Knepley, M., Marin, O., Mills, R. T.,
Munson, T., Smith, B. F., & Zampini, S. (2021). The PetscSF scalable communication
layer. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/10.1109/
TPDS.2021.3084070

Atkins et al. (2026). Ratel: Performance portable solid mechanics with libCEED and PETSc. Journal of Open Source Software, 11(118), 8388. 9
https://doi.org/10.21105/joss.08388.

https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1201/b11644-8
https://doi.org/10.1016/0045-7825(90)90131-5
https://doi.org/10.1016/0045-7825(90)90131-5
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/TPDS.2021.3084070
https://doi.org/10.1109/TPDS.2021.3084070
https://doi.org/10.21105/joss.08388

	Summary
	State of the field
	Statement of need
	Concepts and interface
	Material models and boundary conditions
	Examples
	Acknowledgements
	References

