
geospaNN: A Python package for geospatial neural
networks
Wentao Zhan1 and Abhirup Datta2

1 Department of Statistics, University of Wisconsin-Madison 2 Department of Biostatistics, Johns
Hopkins Bloomberg School of Public Health

DOI: 10.21105/joss.08389

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @Exelegcho1
• @ArkajyotiSaha

Submitted: 02 May 2025
Published: 29 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary

Geostatistical models are essential for analyzing data with spatial structure across the
geosciences, such as climate, ecology, and environmental science. At the same time, modern
machine learning methods, especially neural networks (NNs), offer powerful tools for capturing
complex, nonlinear relationships. Our package geospaNN bridges these two worlds by providing
a Python library that integrates NN modeling with scalable spatial statistics. The software
enables users to fit flexible spatial regression models, estimate complex mean structures, and
generate Gaussian process (GP)–based spatial predictions with uncertainty quantification.
Built on the PyG library designed for efficient graph neural network (GNN) training, geospaNN
supports efficient computation on large, irregular spatial datasets. To handle modern
geospatial data sizes, geospaNN incorporates the Nearest Neighbor Gaussian Process (NNGP)
approximation (Datta et al., 2016) for fast covariance computations.

Statement of Need

Researchers in geoscience and related fields frequently need to model relationships among
spatially distributed variables and generate reliable spatial predictions. Although many Python
machine learning libraries can fit complex nonlinear regression models, they typically ignore
spatial correlation, leading to biased estimates and misleading inference when applied to
geospatial data. Existing spatial modeling tools in Python provide only partial solutions: some
rely on complex neural architectures that sacrifice scientific interpretability, while others use
full GP models whose computational demands make them impractical for large datasets.

geospaNN addresses these limitations by providing a spatial regression framework that combines
the flexibility of NNs with the interpretability and statistical rigor of geostatistical models. It is
designed for geoscientists, environmental researchers, and machine learning practitioners who
need scalable and principled spatial modeling tools in Python. geospaNN enables geometry-aware
covariance estimation and spatial prediction at scales—tens of thousands of locations—that
are feasible on a personal laptop. This makes advanced spatial analysis accessible to individual
researchers without specialized computing infrastructure.

The NNGP implementation within geospaNN also fills a notable gap in the Python ecosystem.
While widely used R packages such as spNNGP (Finley et al., 2019) and BRISC (Saha & Datta,
2018) provide efficient NNGP-based spatial models, no comparable Python implementation
currently exists. geospaNN therefore offers the first Python-based pathway for NNGP modeling
in geospatial applications, meeting the growing demand for large-scale spatial analysis.

State of the field
Integrating geospatial data with modern deep learning has motivated the development of
several specialized Python tools. For example, TorchGeo (Stewart et al., 2022) extends PyTorch

Zhan, & Datta. (2026). geospaNN: A Python package for geospatial neural networks. Journal of Open Source Software, 11(117), 8389.
https://doi.org/10.21105/joss.08389.

1

https://doi.org/10.21105/joss.08389
https://github.com/openjournals/joss-reviews/issues/8389
https://github.com/WentaoZhan1998/geospaNN/
https://doi.org/10.5281/zenodo.18250785
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/Exelegcho1
https://github.com/ArkajyotiSaha
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08389


(Paszke et al., 2019) for tasks such as land cover classification, object detection, and geospatial
segmentation, while the R package geodl (Maxwell et al., 2024) was recently introduced for
analyzing geospatial and spatiotemporal datasets. However, these frameworks are primarily
designed for raster and vector data—especially satellite imagery—rather than for general
geostatistical modeling or spatial regression. Their scope is therefore limited when working
with point-referenced geospatial data or when statistical interpretability is essential.

For irregular spatial data, GNNs have emerged as a powerful modeling approach. PyTorch-

Geometric (PyG) (Fey & Lenssen, 2019) provides a flexible and efficient framework for
implementing GNNs, and these models have been successfully applied to a range of geospatial
tasks, including crop yield prediction (Fan et al., 2022) and traffic flow modeling (Wang et al.,
2020). Despite their popularity, there is still no unified, statistically oriented GNN software
designed specifically for geospatial regression or rigorous covariance modeling. This leaves a
gap between machine learning–focused GNN libraries and the needs of statistical geoscience.

GP–based tools provide another major category of spatial modeling software. PyKrige (Murphy,
2014) offers classical kriging prediction but is limited to predefined mean functions and lacks
scalable covariance computation for large datasets. GPyTorch (Gardner et al., 2018) supports
flexible mean modeling and GP inference within a mixed-model framework, but its functionality
is highly modular and requires substantial custom implementation, making it difficult for
general users to apply. Moreover, its covariance approximations are not explicitly designed to
exploit spatial geometry, which can reduce efficiency and accuracy compared with approaches
tailored to geostatistical structure.

The geospaNN Package
This section provides an overview of the geospaNN package, including the model architecture
and several technical details. For practical examples and detailed documentation, visit the
geospaNN website.

NN-GLS Overview
In methodology, geospaNN uses NN-GLS (Zhan & Datta, 2025), a novel and scalable class of
NNs explicitly designed to account for spatial correlation in the data. NN-GLS embeds NN
with the following spatial mixed model:

𝑌 (𝑠) = 𝑚(𝑋(𝑠)) + 𝜖(𝑠)

where 𝑌 (𝑠) and 𝑋(𝑠) are respectively the outcome and covariates observed at location 𝑠, 𝑚
is a non-linear function relating 𝑋(𝑠) to 𝑌 (𝑠) to be estimated using a NN. The key distinction
from the standard non-linear regression setup is that here the errors 𝜖(𝑠) is a GP that models
spatial correlation.

To solve the model, NN-GLS replaces the original loss function with a GLS-style version, which
naturally equates to a specialized GNN. For computational efficiency, NNGP is introduced to
approximate the covariance,. In NN-GLS, we assume that the parameters of the covariance
matrix is unknown. These covariance parameters 𝜃 for spatial process 𝜖(𝑠) and the weights
parameters of the NN used to model 𝑚 are estimated iteratively, and training proceeds until
the validation loss converges. Once estimation is complete, nearest-neighbor-based kriging is
used to generate spatial predictions at new locations.

Core features of geospaNN
The geospaNN workflow begins by preparing the data and constructing the model inputs.
Users may supply covariates, responses, and coordinates in simple matrix form. The function
geospaNN.make_graph then creates a DataLoader object that organizes the data and handles
batching efficiently:

Zhan, & Datta. (2026). geospaNN: A Python package for geospatial neural networks. Journal of Open Source Software, 11(117), 8389.
https://doi.org/10.21105/joss.08389.

2

https://wentaozhan1998.github.io/geospaNN-doc
https://doi.org/10.21105/joss.08389


data = geospaNN.make_graph(X, Y, coord, nn)

geospaNN provides flexible tools for specifying neural network architectures and defining training
routines, all fully compatible with the PyTorch ecosystem. The code example below illustrates
a typical training setup. Here, a two-layer multilayer perceptron is used to model the nonlinear
mean structure. The nngls_model object implements the NN–GLS model, and trainer_nngls

manages the iterative training process. Users may rely on default hyperparameters or customize
them as needed.

mlp_nngls = torch.nn.Sequential(

torch.nn.Linear(p, 100),

torch.nn.ReLU(),

torch.nn.Linear(100, 20),

torch.nn.ReLU(),

torch.nn.Linear(20, 1),

)

nngls_model = geospaNN.nngls(p=p, neighbor_size=nn, coord_dimensions=2,

mlp=mlp_nngls, theta=torch.tensor(theta0))

trainer_nngls = geospaNN.nngls_train(nngls_model, lr=0.1, min_delta=0.001)

training_log = trainer_nngls.train(data_train, data_val, epoch_num= 200,

Update_init=10, Update_step=2,

batch_size = 60, seed = 2025)

Once training is complete, the fitted model provides three key capabilities:

1. estimate the non-linear mean function by 𝑚̂.
2. estimate the spatial parameters by 𝜃.
3. predict the outcome at new locations by 𝑌.

The mean function 𝑚(𝑥) represents the non-spatial component of the spatial mixed model,
representing the non-spatial relationship between 𝑌 and covariates 𝑋. To obtain predictions of
the mean function for a given matrix of covariates X, users may call:

estimate = nngls_model.estimate(X)

The estimated spatial parameters 𝜃 characterize the spatial correlation structure implied by
the model. They are stored internally and can be accessed directly:

nngls_model.theta

These parameters can be used to reconstruct the implied covariance matrix or inform further
geostatistical analyses.

While mean function estimation reflect the connection between variables, to predict the value
of response 𝑌 at new locations with uncertainty quantification, geospaNN uses predict()

method:

[test_predict, test_PI_U, test_PI_L] = nngls_model.predict(data_train, data_test,

PI = True)

Other Features
In addition to estimation and prediction for the NN-GLS spatial mixed models, geospaNN offers
a suite of additional features that support a wide range of geospatial analyses. geospaNN

provides simulation module allowing users to customize the spatial parameters and mean
functions to generate 𝑌, 𝑋, and 𝑠. Users are allowed to customize the spatial coordinates to
simulate under different context. geospaNN implements nearest neighbor kriging, an alternate
to full kriging, which has been shown in Zhan & Datta (2025) to guarantee accurate prediction
interval under various settings. For essential machine learning tasks, geospaNN offers modules
including NN architecture design, training log report, and result visualization. geospaNN also

Zhan, & Datta. (2026). geospaNN: A Python package for geospatial neural networks. Journal of Open Source Software, 11(117), 8389.
https://doi.org/10.21105/joss.08389.

3

https://doi.org/10.21105/joss.08389


implements spatial linear mixed model (SPLMM) as a special case of NN-GLS. It should be an
optimal choice for the Python users if efficient SPLMM solution is wanted for large geospatial
datasets.

Because the above code snippets rely on additional setup, they are not meant to run
independently. Users can find complete, reproducible examples and detailed documentation in
the project vignette.

Discussion
The geospaNN package provides a machine learning toolkit for geostatistical analysis. Built
on an efficient implementation of the NN–GLS approach proposed in Zhan & Datta (2025),
geospaNN supports a range of core statistical tasks, including nonlinear mean-function
estimation, covariance parameter estimation, and spatial prediction with uncertainty
quantification. Leveraging the sparsity of the NNGP approximation, the software integrates
naturally into the GNN framework, enabling the use of graph-based operations and opening
the door to more advanced neural architectures in geospatial modeling.

Despite these strengths, the current version of geospaNN has several limitations. At present,
the package supports only a limited set of stationary, parametric covariance models and does
not handle non-stationary or non-Gaussian spatial processes. The neural network component is
designed and tested mainly for simple architectures such as multilayer perceptrons, which work
well for moderate-scale spatial data but limit applicability to more complex or high-dimensional
input structures. One important future direction is to increase the flexibility of our model and
add features to the main steps in geospaNN to adopt more general estimation and prediction
tasks. In addition, geospaNN currently requires R-dependency and does not support GPU
acceleration. In the future releases, we will address these key issues to further improve the
performance of the software.

Conceptually, a longer-term direction for geospaNN is to evolve into a general framework
for geospatially informed deep learning, where spatially structured message passing can
be incorporated while maintaining statistical interpretability. We also plan to extend the
methodology to additional data types and distributional settings beyond the current Gaussian
framework.

Acknowledgements
This work is supported by National Institute of Environmental Health Sciences grant
R01ES033739. The authors report there are no competing interests to declare.

References
Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). On nearest-neighbor Gaussian

process models for massive spatial data. Wiley Interdisciplinary Reviews: Computational
Statistics, 8(5), 162–171. https://doi.org/10.1002/wics.1383

Fan, J., Bai, J., Li, Z., Ortiz-Bobea, A., & Gomes, C. P. (2022). A GNN-RNN approach
for harnessing geospatial and temporal information: Application to crop yield prediction.
Proceedings of the AAAI Conference on Artificial Intelligence, 36, 11873–11881. https:
//doi.org/10.1609/aaai.v36i11.21444

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric.
arXiv Preprint arXiv:1903.02428.

Finley, A. O., Datta, A., Cook, B. D., Morton, D. C., Andersen, H. E., & Banerjee, S.
(2019). Efficient algorithms for Bayesian nearest neighbor Gaussian processes. Journal

Zhan, & Datta. (2026). geospaNN: A Python package for geospatial neural networks. Journal of Open Source Software, 11(117), 8389.
https://doi.org/10.21105/joss.08389.

4

https://github.com/WentaoZhan1998/geospaNN/blob/main/vignette/vignette.pdf
https://doi.org/10.1002/wics.1383
https://doi.org/10.1609/aaai.v36i11.21444
https://doi.org/10.1609/aaai.v36i11.21444
https://doi.org/10.21105/joss.08389


of Computational and Graphical Statistics, 28(2), 401–414. https://doi.org/10.1080/
10618600.2018.1537924

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., & Wilson, A. G. (2018). GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. Advances in
Neural Information Processing Systems, 31.

Maxwell, A. E., Farhadpour, S., Das, S., & Yang, Y. (2024). Geodl: An R package for
geospatial deep learning semantic segmentation using torch and terra. PloS One, 19(12),
e0315127. https://doi.org/10.31223/x53m6t

Murphy, B. S. (2014). PyKrige: Development of a kriging toolkit for Python. AGU Fall
Meeting Abstracts, 2014, H51K–0753.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems,
32.

Saha, A., & Datta, A. (2018). BRISC: Bootstrap for rapid inference on spatial covariances.
Stat, 7 (1), e184. https://doi.org/10.1002/sta4.184

Stewart, A. J., Robinson, C., Corley, I. A., Ortiz, A., Lavista Ferres, J. M., & Banerjee,
A. (2022). TorchGeo: Deep learning with geospatial data. Proceedings of the 30th
International Conference on Advances in Geographic Information Systems, 1–12. https:
//doi.org/10.1145/3557915.3560953

Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., Tang, J., Jia, C., & Yu, J. (2020). Traffic flow
prediction via spatial temporal graph neural network. Proceedings of the Web Conference
2020, 1082–1092. https://doi.org/10.1145/3366423.3380186

Zhan, W., & Datta, A. (2025). Neural networks for geospatial data. Journal of the American
Statistical Association, 120(549), 535–547. https://doi.org/10.1080/01621459.2024.
2356293

Zhan, & Datta. (2026). geospaNN: A Python package for geospatial neural networks. Journal of Open Source Software, 11(117), 8389.
https://doi.org/10.21105/joss.08389.

5

https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.31223/x53m6t
https://doi.org/10.1002/sta4.184
https://doi.org/10.1145/3557915.3560953
https://doi.org/10.1145/3557915.3560953
https://doi.org/10.1145/3366423.3380186
https://doi.org/10.1080/01621459.2024.2356293
https://doi.org/10.1080/01621459.2024.2356293
https://doi.org/10.21105/joss.08389

	Summary
	Statement of Need
	State of the field
	The geospaNN Package
	NN-GLS Overview
	Core features of geospaNN
	Other Features

	Discussion
	Acknowledgements
	References

