
MatrixFuns.jl: Matrix functions in Julia
Xue Quan 1,2 and Antoine Levitt 1

1 Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, France 2 School of Mathematical
Sciences, Beijing Normal University, China

DOI: 10.21105/joss.08396

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @vlc1
• @shravanngoswamii

Submitted: 05 June 2025
Published: 19 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The computation of matrix functions (i.e., 𝑓(𝐴) for 𝐴 a 𝑛 × 𝑛 matrix and 𝑓 ∶ ℂ → ℂ)
and their Fréchet derivatives plays a crucial role in many fields of science (Higham, 2008),
and in particular in electronic structure calculations within density functional theory and
response calculations. For Hermitian 𝐴, computing 𝑓(𝐴) can be done efficiently and stably by
diagonalization. In the non-normal case, however, diagonalization is unstable and alternative
schemes have to be used. Even in the Hermitian case, the evaluation of Fréchet derivatives
requires (high-order) divided differences, which by Opitz’s formula (de Boor, 2005) is equivalent
to the exact computation of 𝑓(𝐴) for non-normal 𝐴.

In this work, we develop MatrixFuns.jl a Julia package (Bezanson et al., 2017) to provide
the robust computation of matrix functions for arbitrary square matrices and higher-order
Fréchet derivatives for Hermitian matrices. This package is tailored towards high accuracy
with relatively small matrices and relatively complicated functions 𝑓. Our work is based on
the Schur-Parlett algorithm (Davies & Higham, 2003; Higham & Al-Mohy, 2010), with the
following modifications:

• It supports functions that are discontinuous, or have sharp variations.
• It does not require the computation of arbitrary-order derivatives of 𝑓.
• It exploits existing special-purpose methods for computing matrix functions (e.g., for

functions involving exponentials or logarithms) when they exist.

Statement of need
MatrixFuns.jl aims to provide high-accuracy computations for general matrix functions and
arbitrary-order Fréchet derivatives (including divided differences) in Julia. Julia provides
some native matrix functions, but the choice is limited to a few functions for which special-
purpose algorithms exist (e.g., exponentials, logarithms, matrix powers). There are no dedicated
functions in Julia for computing Fréchet derivatives and divided differences; some Julia packages
offer tools for their computation (e.g., ChainRules.jl (White, 2019), DFTK.jl (Herbst et al.,
2021)), but are typically limited to first order.

Methods

Matrix functions
The basic principle of the Schur-Parlett algorithm is as follows. First, one performs a Schur
decomposition to reduce to the case of an upper triangular matrix. Then, one uses the

Parlett recursion, which for a block matrix 𝐴 = (𝐴11 𝐴12
0 𝐴22

) expresses 𝐵 = 𝑓(𝐴) as

𝐵11 = 𝑓(𝐴11), 𝐵22 = 𝑓(𝐴22) and 𝐵12 given by the solution of the Sylvester equation

Quan, & Levitt. (2025). MatrixFuns.jl: Matrix functions in Julia. Journal of Open Source Software, 10(112), 8396. https://doi.org/10.21105/joss.
08396.

1

https://orcid.org/0000-0003-3349-9517
https://orcid.org/0000-0002-3999-0289
https://doi.org/10.21105/joss.08396
https://github.com/openjournals/joss-reviews/issues/8396
https://github.com/xuequan818/MatrixFuns.jl
https://doi.org/10.5281/zenodo.16899270
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/vlc1
https://github.com/shravanngoswamii
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08396
https://doi.org/10.21105/joss.08396

𝐴11𝐵12 −𝐵12𝐴22 = 𝐵11𝐴12 −𝐴12𝐵22. In principle, this can be used to compute 𝑓(𝐴) by a
recursion, but the Sylvester equation becomes ill-conditioned when 𝐴11 and 𝐴22 do not have
well-separated eigenvalues. In this case, one can use Taylor series, as proposed in Davies &
Higham (2003) and Higham & Al-Mohy (2010), but this has the disadvantage of requiring
arbitrarily many derivatives of 𝑓, which might be impractical in some applications (e.g., when
the function is not analytic, or has sharp variations).

Our algorithm attempts to find a partition of the eigenvalues of 𝐴 (computed using a Schur
decomposition) into blocks that are well-separated. The diagonal blocks are then computed
using Taylor series, and the Parlett recursion is used to fill out the off-diagonal blocks. The
partitioning aims to find small blocks (so that low-order Taylor series can be used) that are
well-separated (so that the Parlett recursion is well-conditioned).

To find the partition, we start by partitioning the set of eigenvalues Λ into disjoint clusters Λ𝑖
such that the distance between two such clusters is at least sep, where sep is a user-definable
parameter. We then check if the partition is acceptable by estimating the error in all the clusters;
if the estimated error is acceptable, we accept the partition; if not, we split the unacceptable
clusters further by applying the partitioning algorithm recursively to each unacceptable Λ𝑖.
We estimate the error in a cluster Λ𝑖 of diameter 𝑑𝑖 as err𝑖 = (𝑑𝑖

scale)
max_deg+1. We accept a

cluster if err𝑖 < 𝜀/sep. This choice is made to balance the error originating from the Taylor
expansion within a cluster err𝑖 with the error incurred by the use of the Parlett recursion 𝜀/sep.

Therefore, our algorithm has the following parameters:

• scale, the characteristic scale of variations of 𝑓, set to 1 by default.
• max_deg, the order of the Taylor series used, which should be set by the user according

to the regularity of the function under consideration and the feasibility of computing high-
order derivatives (computed automatically using TaylorSeries.jl (Benet & Sanders,
2019) and Arblib.jl (Dahne, 2025), where the latter is faster in calculating much
larger orders and supports some special functions from SpecialFunctions.jl (Johnson,
2025)). By default, set to a large value.

• sep, the initial separation distance, set to 0.1 ∗ scale by default following (Davies &
Higham, 2003; Higham & Al-Mohy, 2010).

• 𝜀, the target accuracy, set to machine accuracy by default.

In the case where Julia natively supports the computation of 𝑓(𝐴) (as determined by trying to
compute f(ones(1,1)) and catching any resulting error), we use them instead of Taylor series
to compute diagonal blocks. In the error estimate, we consider max_deg = ∞, and therefore
use a partition with maximal diameter scale. We partition the eigenvalues rather than simply
call the native 𝑓(𝐴), because 𝑓 can still have sharp variations, which would cause inaccuracies
in 𝑓(𝐴). For example:

f(x) = I/(I+exp(50*x));

A = [-0.1 10.0 0.0; 0.0 1 5.0; 0.0 0.0 -0.11];

f(A) # native call

3×3 Matrix{Float64}:

0.993307 -9.03006 -3.33299e7

0.0 1.92875e-22 -4.48617

0.0 0.0 0.99593

mat_fun(f, A; scale=1/50) # Schur-Parlett

3×3 Matrix{Float64}:

0.993307 -9.03006 -28.8619

0.0 1.92875e-22 -4.48617

0.0 0.0 0.99593

Quan, & Levitt. (2025). MatrixFuns.jl: Matrix functions in Julia. Journal of Open Source Software, 10(112), 8396. https://doi.org/10.21105/joss.
08396.

2

https://doi.org/10.21105/joss.08396
https://doi.org/10.21105/joss.08396

For discontinuous functions, or functions with sharp variations, our algorithm takes as input a
color mapping color ∶ ℂ → ℤ, 𝜆 ↦ 𝑎, and makes sure that all the eigenvalues inside a cluster
have the same color. This ensures that Taylor expansions are not used across the discontinuity
boundaries.

Fréchet derivatives
For a Hermitian 𝐴 ∈ ℂ𝑛×𝑛, denote the eigenpairs by {(𝜆𝑖, 𝑣𝑖)}. The 𝑁-th order Fréchet
derivative expresses the variation of 𝑓(𝐴) with respect to a set of variations 𝐻1,… ,𝐻𝑁, and
is given by (see the documentation of MatrixFuns.jl for details)

d𝑁𝑓(𝐴)𝐻1 ⋯𝐻𝑁 =
𝑛
∑

𝑖0,⋯,𝑖𝑁=1
𝑣𝑖0(∑

𝑝∈𝒫𝑁

(𝐻𝑝(1))𝑖0,𝑖1 ⋯(𝐻𝑝(𝑁))𝑖𝑁−1,𝑖𝑁)𝑓[𝜆𝑖0 , ⋯ , 𝜆𝑖𝑁]𝑣
∗
𝑖𝑁 ,

where (𝐻𝑝(𝑘))𝑖,𝑗 = 𝑣∗𝑖𝐻𝑝(𝑘)𝑣𝑗 and 𝑝 ∈ 𝒫𝑁 is an arbitrary permutation of {1,⋯ ,𝑁}. The
higher-order divided differences 𝑓[𝑥0,… , 𝑥𝑁] defined recursively by

𝑓[𝑥0,… , 𝑥𝑁] = {
(𝑓[𝑥0,… , 𝑥𝑁−1] − 𝑓[𝑥1,… , 𝑥𝑁])/(𝑥0 − 𝑥𝑁), if 𝑥0 ≠ 𝑥𝑁,
𝜕
𝜕𝑧𝑓[𝑧, 𝑥1,… , 𝑥𝑁−1]∣𝑧=𝑥0

, if 𝑥0 = 𝑥𝑁.

The naive evaluation of this recurrence formula is prone to numerical stabilities. Instead, we
compute the divided differences using Opitz’s formula

𝑓
⎛⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝑥0 1
𝑥1 ⋱

⋱ 1
𝑥𝑁

⎤
⎥⎥
⎦

⎞⎟⎟⎟
⎠

=
⎡
⎢⎢
⎣

𝑓[𝑥0] 𝑓[𝑥0, 𝑥1] ⋯ 𝑓[𝑥0,… , 𝑥𝑁]
𝑓[𝑥1] ⋱ ⋮

⋱ 𝑓[𝑥𝑁−1, 𝑥𝑁]
𝑓[𝑥𝑁]

⎤
⎥⎥
⎦

.

Therefore, the key point in evaluating the Fréchet derivative reduces to computing matrix
functions for upper triangular matrices.

Examples
We first show how to use MatrixFuns.jl to compute the matrix functions, divided differences,
and Fréchet derivatives for smooth functions such as exp.

using MatrixFuns

A = [-0.1 1.0 0.0; 0.0 -0.05 1.0; 0.0 0.0 0.01];

mat_fun(exp, A) # returns exp(A)

3×3 Matrix{Float64}:

0.904837 0.92784 0.477323

0.0 0.951229 0.980346

0.0 0.0 1.01005

div_diff(exp, -0.1, -0.05, 0.01) # returns exp[-0.1,-0.05,0.01]

0.47732345844677654

H = 0.5 * (A + A'); # generates a Hermitian matrix

hs = map(i -> i * H, [1, 2]);

mat_fun_frechet(exp, H, hs) # returns d^2exp(H)hs[1]hs[2]

3×3 Matrix{Float64}:

Quan, & Levitt. (2025). MatrixFuns.jl: Matrix functions in Julia. Journal of Open Source Software, 10(112), 8396. https://doi.org/10.21105/joss.
08396.

3

https://doi.org/10.21105/joss.08396
https://doi.org/10.21105/joss.08396

0.519468 0.347941 0.55445

0.347941 1.10871 0.46992

0.55445 0.46992 0.610653

In addition to the usual smooth functions, MatrixFuns.jl can also support special functions
and discontinuous functions. Here, we use the error function erf and the sign function sign

to show how it can be used to handle functions with different smoothness.

using MatrixFuns, SpecialFunctions

A = [-0.1 1.0 0.0; 0.0 -0.05 1.0; 0.0 0.0 0.01];

mat_fun(erf, A) # smooth function

3×3 Matrix{Float64}:

-0.112463 1.12182 0.0524648

0.0 -0.056372 1.12759

0.0 0.0 0.0112834

mat_fun(x -> erf(500x), A; scale=1/500, color=x->x<0 ? 1 : 2) # singular function

3×3 Matrix{Float64}:

-1.0 0.0 303.03

0.0 -1.0 33.3333

0.0 0.0 1.0

mat_fun(sign, A; color=x->Int(sign(x))) # discontinuous function with smooth branches

3×3 Matrix{Float64}:

-1.0 0.0 303.03

0.0 -1.0 33.3333

0.0 0.0 1.0

Reference
Benet, L., & Sanders, D. P. (2019). TaylorSeries.jl: Taylor expansions in one and several

variables in julia. Journal of Open Source Software, 4(36), 1043. https://doi.org/10.
21105/joss.01043

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Dahne, J. (2025). Arblib.jl. Zenodo. https://doi.org/10.5281/zenodo.15058432

Davies, P. I., & Higham, N. J. (2003). A Schur-Parlett algorithm for computing matrix
functions. SIAM Journal on Matrix Analysis and Applications, 25(2), 464–485. https:
//doi.org/10.1137/S0895479802410815

de Boor, C. (2005). Divided differences. Surveys in Approximation Theory, 1, 46–69. http:
//eudml.org/doc/51657

Herbst, M. F., Levitt, A., & Cancès, E. (2021). DFTK: A Julian approach for simulating
electrons in solids. Proc. JuliaCon Conf., 3, 69. https://doi.org/10.21105/jcon.00069

Higham, N. J. (2008). Functions of Matrices: Theory and Computation. SIAM. https:
//doi.org/10.1137/1.9780898717778

Higham, N. J., & Al-Mohy, A. H. (2010). Computing matrix functions. Acta Numerica, 19,
159–208. https://doi.org/10.1017/S0962492910000036

Johnson, S. G. (2025). SpecialFunctions.jl. https://github.com/JuliaMath/SpecialFunctions.jl

White, F. (2019). ChainRules.jl. Zenodo. https://doi.org/10.5281/zenodo.14926720

Quan, & Levitt. (2025). MatrixFuns.jl: Matrix functions in Julia. Journal of Open Source Software, 10(112), 8396. https://doi.org/10.21105/joss.
08396.

4

https://doi.org/10.21105/joss.01043
https://doi.org/10.21105/joss.01043
https://doi.org/10.1137/141000671
https://doi.org/10.5281/zenodo.15058432
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1137/S0895479802410815
http://eudml.org/doc/51657
http://eudml.org/doc/51657
https://doi.org/10.21105/jcon.00069
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1017/S0962492910000036
https://github.com/JuliaMath/SpecialFunctions.jl
https://doi.org/10.5281/zenodo.14926720
https://doi.org/10.21105/joss.08396
https://doi.org/10.21105/joss.08396

	Summary
	Statement of need
	Methods
	Matrix functions
	Fréchet derivatives

	Examples
	Reference

