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Summary

hashin_shtrikman_mp is a tool for composites designers who have desired composite prop-
erties in mind, but who do not yet have an underlying formulation. The library utilizes the
tightest theoretical bounds on the effective properties of composite materials with unspecified
microstructure — the Hashin-Shtrikman bounds — to identify candidate theoretical materials,
find real materials that are close to the candidates, and determine the optimal volume fractions
for each of the constituents in the resulting composite. lts features include (i) leveraging of
materials in the Materials Project database, (ii) integration with the Materials Project API, (jii)
use of genetic machine-learning, (iv) agnosticism to underlying microstructure, and (v) ultimate
engineering application, make it a tool with much broader applications than its predecessors.

Statement of need

Composites are ubiquitous in engineering due to their tunability and enhanced material
properties as compared to their individual constituents. As such, composite design is an
active field, but the pursuit of new materials through experimentation is expensive. Today,
computational tools for materials design are integral to reducing the cost and increasing the
pace of innovation in sectors like energy, electronics, aviation and beyond.

Several Python packages already exist for specific areas in composites modeling, such as
HomoPy, CompositesLib, Compysite, FeCLAP, and material-mechanics, all of which perform
stress analysis on laminates and/or fiber-reinforced composites using either classical laminate
theory or the finite element method. Others exist which, like hashin_shtrikman_mp, utilize
the Hashin-Shtrikman bounds on effective composite properties, such as BurnMan for thermal
analysis of composite rocks/assemblages, rockphypy for mechanical modeling of sand-shale
systems, (Zare & Rhee, 2017)'s modeling of clay nanocomposites, mechmean, and (Zerhouni
et al., 2019)’'s modeling of 3D printed microstructures. All of these tools, however, are highly
specific to composite microstructure, macro-geometry, and composition. More notably, they
focus on analysis of already well-defined composites, rather than discovery of new materials.

hashin_shtrikman_mp is intended for composites designers who are much earlier in their design
process — designers who are seeking out new composite formulations and who are not yet
tied to a specific underlying microstructure. hashin_shtrikman_mp defines an inverse problem
wherein composite formulations which achieve a desired behavior are found by minimizing a
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cost function (Zohdi, 2012). Accounting for both absolute error from the desired properties
and targeting even load distribution across constituent phases, hashin_shtrikman_mp returns
candidate theoretical materials, then searches for real materials in the Materials Project
database with properties close to the recommended constituents.

Underlying theory

Governing equations and applicability of the Hashin-Shtrikman bounds

The Hashin—Shtrikman (HS) variational bounds apply to homogenization problems governed
by linear, self-adjoint, elliptic partial differential equations of the form

V- (A(®) : Vu(z)) = f(=), (1)

where A(x) is a symmetric positive-definite local property tensor. This general formulation
covers a wide class of physical phenomena including steady-state heat conduction (A = k(z),
thermal conductivity), electrostatics (A = o, (x), electrical conductivity), and linear elasticity
(A = E(x), stiffness). Under these assumptions, the effective local property tensor A" of the
composite is uniquely defined, and the Hashin—Shtrikman bounds give the tightest possible
estimates on A" given only the phase properties and volume fractions.

Estimate effective composite properties with the HS bounds

When designing composites, simple volume-weighted linear combinations of constituent material
properties do not yield accurate approximations of the resulting effective composite properties.
Instead, for laminates, materials designers often bound the resulting composite properties using
equations from constitutive elastic theory, such as the Hill-Reuss-Voight-Weiner bounds, where
the lower bound is the harmonic mean of the constituent material properties and the upper
bound is the arithmetic mean (Brown, 2015). For quasi-isotropic and quasi-homogeneous
multi-phase composites with arbitrary phase geometry (a more general case), a better option is
to use the HS bounds, which provide even tighter ranges on the resulting effective properties
(Hashin & Shtrikman, 1962). Equation 2 summarizes the HS bounds on a generalized effective
material property y* of an n-phase composite. The generalized material properties for the
n-phases are ordered from least to greatest where y; < y, < -+ < y,, with corresponding
volume fractions that sum to unity v; + v4 + -+ v, = 1, and are given by

y1+1fiﬁ=y*"§y*éy*’+:yn+l_iﬁ (2)
where . )
1= % and «, = %, (3)
and . y o .
A= ; m—— and A, = ; =—— (4)
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Figure 1: An example of a quasi-isotropic, quasi-homogeneous 3-phase composite.

Equation 5 and Equation 6 summarize the results of the HS derivations on the bounds on
effective bulk modulus k* and effective shear modulus p*, where it is simultaneously required
that K] < Ky << Ky, and g < pg < - < pyye

Af + A~r
*,— * * _ n
Iﬂ‘/l-l-m:h}’ SKJ SKJ’ —Iﬁ)n—i-m (5)
Al A
— <yt < yht = n 6
“1+1—o/fA‘; prT S pt < p P+ T am (6)
with 3 3
af=——— and af=———, 7
b3k +4p " 3k, +4u, ™
and 5 3
a,lll — (K‘l + p‘l) and Oé% — (K‘n + Mn) , (8)
5p1 (3K + 4py) Stip (3, + 4piy,)
and
n V. n—1 v,
Al = —* — and AF = _t 9
i Do e S D Pl g ©
and
Al = ——— — and A4 = _t (10)
1 n 1
; o T = o Ton

The elastic forms for {Af} and {A!'} differ from the general forms {A,} because of their
coupling via the Kirchoff-St. Venant constitutive law.

Once upper and lower bounds on the effective composite properties have been obtained, what
remains is to find a final estimate of the resulting material properties. By the definition of
bounds, we can write an expression for the effective property as

v =y + (1 =7yt (11)

Given experimental data, one could fit v and extrapolate for a range of volume fractions, but,
in the absence of experimental data, the authors select v = 0.5. For more information, the
reader is referred to (Zohdi & Wriggers, 2008).
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Quantifying distributed loads with concentration tensors

In addition to finding effective properties of potential composites, hashin_shtrikman_mp
recommends composites that are less prone to failure under extreme loading. When loads
are not efficiently shared between constituents of the composite, stress concentrations, hot
spots, and electrical shorts can develop, eventually leading to material failure. By introducing
the concept of “concentration tensors”, we can quantify a constituent’s contribution to load
response and then use constitutive laws to determine how the composite will respond to loads.

The general constitutive law given in Equation 1 can also be written more conveniently as

{(z) = A(z) : Vu(z), (12)

where Vu(x) is a tensor-valued load (a field gradient like strain, electric field, or temperature
gradient), £(x) is a tensor-valued response (a flux like stress, current, or heat flux), and A(x)
is a local property tensor (stiffness, conductivity).

Over the domain €2, we note that, by the definition of volume fraction, the tensor-valued load
will abide by:

(Vu(@))g =D vi(Vu(x))g, (13)
i=1
and the tensor-valued response will abide by
(@) =D vilé(x))a,, (14)
i=1

where () = ﬁ fQ() dS) is the average of (-) over the domain, v; is the volume fraction of

phase i, and n is the number of phases. From there, we define the concentration tensors for
the applied loads Vu(x) and responses &(x) for phases i € [1,...,n], respectively, as

(Vu(@))g, = G joaa(Vu(®))g (15)

and

<E(w)>ﬂ = CVi,response<€(m)>9' (16)

i

It follows from these definitions, and the assumption that the composite is isotropic and
homogeneous, that the concentration tensors can be written only in terms of local property
tensors A(x). The concentration tensors for the applied loads for phases i € [2,...,n] are
subsequently given by

1 1
n—1wv,

C.

i,load —

[A" — A;]: [A; — A (17)

and for phase 1 as
1 n
Cl,load = U_l 1- ZviCi,Ioad : (18)
i=2

The concentration tensors for the responses for phases i € [2,...,n] are given by

C'i,response = Az : C’i,load : (A*)_l (19)
and for phase 1 as
1 n
C’l,response = U_l (1 - Zvici,response> . (20)
=2
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As a concrete example, consider Ohm’s law

J(@) = o (x) : Vo(z), (21)

which relates the applied electric field (gradient of the electric potential E = V¢(x)) to the
resulting current density J via the electrical conductivity o, governing a 3-phase composite.
The concentration tensors for current density would be

Cry=—(1-v,Cy ;—03Cs ),

1
U1
Cyyj=0,.:Cop: (8), (22)

Cs3,=03.:C3p: (8),

where o would be found according to the previous section. The concentration tensors for
electric field would be

1
C1,E = — (1 - Uzcz,E - ”303,13) )

1
1 1 * * -1
C2,E = 5_(0-8 - Ul,e) : (02,6 - Ul,e) ) (23)
U2
11 * * —1
C3,E = 51}_3(0.6 - Ul,e) : (03,6 - Ul,e) .

In the case where the constitutive law governing concentration tensors is the Kirchoff-St. Venant
law, which relates the tensor-valued strain to the tensor-valued stress via the tensor-valued
stiffness, we can additionally define scalar-valued concentration factors C; . and C; ,, which
respectively are the concentration factors for hydrostatic and deviatoric stress. For phases

i € [2,...,n] They are defined as

o = 3 220" = )= ) (24)
and '
Con = W = ) (i — )7t (25)
where 1
<§tra'>gi =G, <§tr0'>Q (26)
and
(0)q =Cinlo)g- (27)

For phase 1, the concentration tensors are defined as

G = i (1 - ZC) (28)

=2

and

1 n
Cy, = o (1 - Zvic’i,u) ) (29)

=2

For more information, the reader is referred to (Zohdi & Wriggers, 2008).
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Package overview

Implementation notes

The library has been designed to handle the design of 2- to 10-phase isotropic and homogeneous
composites. All materials in the Materials Project database are available for search through
hashin_shtrikman_mp, but it is recommended that users restrict the search bounds for universal
anisotropy to be between 0.5 and 1.5 for results closer to theory. Additionally, at the time of
this writing, because of the assumption that the composite and its constituents are isotropic
and homogeneous, the full tensor forms for the effective properties and concentration tensors
are collapsed to scalar forms. This is simpler computationally and allows the same code to
be used for all properties (aside from bulk and shear moduli, which cannot be decoupled).
For material properties in the Materials Project database with full tensor values available,
hashin_shtrikman_mp uses the largest eigenvalue. Figure 2 is a flow chart demonstrating the
most common usage of hashin_shtrikman_mp.
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START

Store in an instance
of the Mixture() class

Each property is an instance
of the MixtureProperty() class

e.g. 3 constituents

Each constituent is an instance of the Material() class
Each property is an instance of the MaterialProperty() class

call GeneticAlgorithm.run()

call Population.set_costs()

if num_generations
notreached

if num_generations reached

END

Figure 2: A flow chart demonstrating the most common usage of hashin_shtrikman_mp.
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Cost function design and optimization with genetic algorithm

To find optimal composite mixtures, hashin_shtrikman_mp simultaneously seeks composite
compositions with effective properties close to the desired properties and seeks to ensure
even load sharing among the composite constituent phases. Accordingly, the cost function is
constructed in the following way.

Each property category selected by a user contributes its own term to the total cost function. At
the time of this writing, the possible property categories are elastic, dielectric, carrier-transport,
magnetic, and piezoelectric. Combining the individual cost functions to optimize across all
design goals simultaneously yields

Htotal Wd [Helastlc + Hdlelectrlc + Hcarner transport + Hmagnetlc + leezoelectrlc] (30)
omains

where Wy ains NOrmalizes for the number of active property categories. Each property
category contribution is composed of two weighted sums: 1) one with terms for absolute error
between the effective and desired properties and 2) another for the absolute error between the
concentration factors and a tolerance TOL that quantifies “well-distributed” load sharing. That
is,

*,D
Y — yz

D

0, else,

M props

TOL . .
,  if property category active,

eneral __ Wes E
118 — 1

(31)

where the superscript D denotes the desired value, n,,,, is the number of properties in that
property category, n is the number of concentration factors in that category (typically two x
the number of propertles), and C; is a general scalar-valued concentration factor from section

“Quantifying distributed loads with concentration tensors”. Note also that weg = 1/n,,,,, and

i — ) Wep C; > ToL,
f 0, otherwise,

where w g =1/(2n ), except in the elastic case where w = 1/n

props M materials props M materials-

As a concrete example, the dielectric contribution to the cost function would take the form

oD ex
et ef?D P . .
[Tdielectric _ Ai’E’J o ToL m Ci,EO oL if dielectric property category active,
et TOL cf TOL ’
0, else,

(32)

where the constitutive law, in the scalar case, relates applied field E; to resulting field E via
the dielectric constant € according to E' = eE, and the same rules for the weights apply as
above.

With the cost function defined, hashin_shtrikman_mp converges to an optimal solution with
a genetic algorithm. Each member of a population in the genetic algorithm is composed
of candidate material property values. After successive selection and breeding over many
generations, the genetic algorithm will converge. The default genetic algorithm parameters are
10 parents, 10 children, 200 members per population, and 100 generations, but a user can
change them. Given the cost function design, the cost value can be thought of as the fractional
error from the desired outcome, plus penalties for "bad” load sharing (should contribute 0 in
the case of "good” load sharing). A user can monitor the results of the genetic algorithm with
the convergence plot, an example of which is included in Figure 3.
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Notes on genetic algorithms: Genetic algorithms are great for exploring promising parts of
the design space, and since the end goal is to choose composite constituents from a set of
discrete choices (materials in the MP database), no further refinement with a gradient-based
optimization method is needed. The nature of genetic algorithms is to produce several offspring
with the same properties and costs after many generations. Thus, hashin_shtrikman_mp
presents the user with only the unique top performing designs in a table. For the singular
lowest-cost performer, users are presented with a breakdown of the cost, as in Figure 4.

Visualization and analysis

hashin_shtrikman_mp provides visualization tools for the genetic algorithm results and for
matches with 2-, 3-, or 4- phases.

Figure 3 is a convergence plot showing the value of the genetic algorithm cost function
decreasing over generations. The monotonically decreasing staircase nature is characteristic
of genetic algorithm convergence, where the best performer may remain the best for several
generations and where several genetic strings may converge to the same value (e.g. when
the average cost of top ten performers equals the best cost). As the cost function has been
designed to represent absolute error from the desired properties, a cost of 1.0 represents 100%
error.

Figure 4 contains a breakdown of the non-zero cost at the end of optimization for a 3-phase
material where the properties of interest were electrical conductivity, thermal conductivity,
bulk modulus, shear modulus, and universal anisotropy. We expect the cost function to have
31 terms in this case, as there is one effective property term per property and there are two
concentration factor terms per property per material, except in the coupled case of bulk and
shear moduli, where there are two concentration factors per material instead of the expected
four i.e.

= 5 effective properties: one for each of the properties of interest,

= 18 non-modulus concentration factors: one load and one response concentration factor
for each of the 3 non-elastic properties (electrical conductivity, thermal conductivity, and
universal anisotropy), and for each of the 3 phases, and

= 6 modulus concentration factors: one hydrostatic and one deviatoric concentration factor
for each of the 3 phases.

0.26 —— Avg. of top 10 performers

—— Best costs
0.24

0.22

Cost

0.2

0.18

0.16
0 20 40 60 80

Generation

Figure 3: An example of the convergence plot for the genetic algorithm.
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M cf response from elec_cond_300k_low_doping, mat 1
M eff. elec_cond_300k_low_doping
cf deviatoric stress, mat 2
M eff. universal_anisotropy
cf load on elec_cond_300k_low_doping, mat 1
cf deviatoric stress, mat 1
cf hydrostatic stress, mat 2
cf load on elec_cond_300k_low_doping, mat 0
cf load on universal_anisotropy, mat 1
cf response from universal_anisotropy, mat 1
cf load on therm_cond_300k_low_doping, mat 0
cf response from therm_cond_300k_low_doping, mat 1
cf deviatoric stress, mat 0
cf load on therm_cond_300k_low_doping, mat 1

Figure 4: A breakdown of the contributions to the non-zero cost at the end of optimization. Due to the
scrollable nature of the legend, only a subset of the 31 entries is visible.

Once matches have been identified for a desired composite, along with recommended volume
fractions, a user can still explore how varying the volume fractions of the constituents affect
the resulting effective properties through interactive phase diagrams. Examples of these phase
diagrams are included in Figure 5, Figure 6, and Figure 7.

Electrical Conductivity (Al203, AlCu02)

180

160

140
[S/m]
{0.4489796, 132.3268)|

120

100

o 0.2 0.4 0.6 0.8

-

Volume fraction Al203 (mp-684591)

Figure 5: Example phase diagram for a 2-phase mixture of Al,O; and AICuO,. The “mp” numbers are
the Materials Project IDs for the materials.
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Electrical Conductivity (Al203, AlCu02, MgSi03)

Figure 6: Example phase diagram for a 3-phase mixture of Al,O,, AlICuO,, and MgSiO,.

Electrical Conductivity (Al203, AlCuO2, MgSi03, MgAl204)

® [S/m]
o
i 180

160

Figure 7: Example phase diagram for a 4-phase mixture of Al,O5, AICuO,, MgSiO; and MgAl,O,.

Becker et al. (2025). hashin_shtrikman_mp: a package for the optimal design and discovery of multi-phase composite materials. Journal of Open11
Source Software, 10(114), 8412. https://doi.org/10.21105/joss.08412.


https://doi.org/10.21105/joss.08412

The Journal of Open Source Software

Match-finding

The genetic algorithm returns suggested material properties for each of the phases in the
composite and then hashin_shtrikman_mp finds real materials in the Materials Project database
which are similar, according to some percent error threshold, which the user can control.
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