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Summary
TMLE.jl is a Julia (Bezanson et al., 2017) package implementing targeted minimum loss-based
estimation (TMLE), a general framework for causal effect estimation that unites modern
machine learning with the theoretical guarantees of semiparametric statistics. TMLE yields
doubly robust and semiparametrically efficient estimators, meaning it remains consistent if
either the outcome model or the treatment assignment model is correctly specified, and it
achieves the smallest possible asymptotic variance under standard regularity conditions. The
package integrates with the broader Julia machine learning ecosystem and can be used in
both observational and experimental settings. It is particularly well-suited for high-dimensional
problems where robust inference is essential.

Background
Causal inference is essential for understanding the effects of interventions in real-world settings,
such as determining whether a treatment improves health outcomes or whether a genetic
variant contributes to disease risk. Traditional approaches often begin by positing a specific
parametric model, such as a linear-Gaussian or logistic regression model, and then estimating
its parameters using efficient likelihood-based methods. This strategy has two main drawbacks.
First, the quantity being estimated is often dictated by the parametric form of the model
rather than the scientific question of interest (e.g., additive effects under a linear model,
odds ratios under a logistic model). Second, when the model is misspecified, particularly in
high-dimensional settings with complex interactions, parametric estimators can be severely
biased.

Over the past two decades, new approaches have emerged that combine causal inference,
machine learning (ML), and semiparametric theory to address these limitations. These methods
begin with the explicit definition of a target parameter, often a causal estimand such as the
average treatment effect, derived from a causal model. They then replace restrictive parametric
models with flexible ML algorithms (e.g., gradient boosting, neural networks) to estimate
nuisance components such as the outcome regression and treatment mechanism (called
nuisance functions). However, since most ML methods are optimised for prediction rather
than unbiased estimation, ML-based estimates are still biased when plugged directly into the
parameter formula. To remove this bias, modern approaches use a debiasing step based on a
key mathematical object, the efficient influence function (EIF). The result is an estimator that
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is asymptotically unbiased, efficient, and valid under much weaker assumptions than traditional
parametric models.

Several estimators share this debiasing principle. The one-step estimator (OSE) (Kennedy,
2024; Pfanzagl & Wefelmeyer, 1985) is a general methodology which proceeds by estimating
and removing the bias resulting from machine-learning fitting via the EIF. The widely used
augmented inverse probability of treatment weighting (Glynn & Quinn, 2010), is a special case
of the OSE for the average treatment effect. The double machine learning (DML) framework
(Chernozhukov et al., 2018) extends the OSE by introducing cross-fitting, which allows the
use of highly flexible ML algorithms without restrictive empirical process conditions (e.g.,
Donsker assumptions). A limitation of both OSE and DML is that they perform debiasing
in the parameter space, which can lead to estimates outside the natural range of the target
causal estimand (e.g., probabilities below 0 or above 1). In contrast, the targeted maximum
likelihood estimator (TMLE) (Van der Laan et al., 2011; Van der Laan & Rose, 2018) performs
the debiasing step in function space by iteratively updating the initial ML fit so that the
resulting estimate both removes bias and respects the parameter’s natural bounds. While
more involved to implement, TMLE retains all the theoretical guarantees of OSE/DML while
ensuring parameter validity.

TMLE.jl is a Julia package that implements both TMLE and the OSE, with or without
cross-fitting, for the estimation of causal parameters in observational and experimental studies.
It enables researchers to estimate average treatment effects and other causal parameters
while leveraging modern ML algorithms. TMLE.jl is applicable across a broad range of
disciplines—including epidemiology, biostatistics, econometrics, and genomics—where valid
causal effect estimation from high-dimensional or observational data is essential.

Statement of Need
The main entry point to the DML methodology, in both Python and R, is the DoubleML
package (Bach et al., 2022; Bach, Kurz, et al., 2024; Bach, Chernozhukov, et al., 2024).
Further Python packages focused on the estimation of the conditional average treatment effect
include EconML (Keith Battocchi, 2019) and CausalML (Chen et al., 2020).

Despite its theoretical and practical advantages, targeted maximum likelihood estimation
(TMLE) remains largely implemented in R, with limited support in other languages. The
original tmle package (Gruber & van der Laan, 2012) provides a single estimator for various
causal parameters and relies on the SuperLearner package for flexible nuisance estimation.
The more recent tmle3 package (Coyle, 2021) offers a unified, object-oriented interface that
explicitly represents the key mathematical components of TMLE. It supports a broad range of
parameters, integrates cross-validated TMLE (CV-TMLE), the TMLE analogue of cross-fitting
in DML, and is part of the broader tlverse ecosystem. Specialised extensions in this ecosystem
target particular estimands, such as the mean outcome under the optimal treatment rule
(tmle3mopttx) (Malenica et al., 2022) and stochastic intervention parameters (tmle3shift)
(Hejazi et al., 2021). Longitudinal TMLE for time-varying exposures is supported by the separate
ltmle package (Lendle et al., 2017). To improve the robustness of estimators, for instance in
the presence of practical violations or model instability, the collaborative targeted maximum
likelihood estimation (C-TMLE) framework has been proposed, with several implementations
available via the ctmle package (Ju et al., 2017).

For practitioners and developers who prefer a performant, composable, and type-safe environ-
ment such as Julia, no native TMLE implementation previously existed. As causal inference
methods gain traction in computational biology, health sciences, economics, and other data-
intensive disciplines, the absence of robust, well-integrated TMLE tooling in modern scientific
programming languages has become increasingly limiting. TMLE.jl addresses this gap by
providing the first native Julia implementation of TMLE. It supports the estimation of a variety
of causal estimands, including the counterfactual mean, average treatment effect, and average
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interaction effects of arbitrary order. Any differentiable transformation of these estimands
(e.g., risk ratio, odds ratio) can be obtained via automatic differentiation. Both TMLE and
one-step estimators (OSE) are available in canonical and cross-fitting variants through a unified
interface, and selected C-TMLE instantiations (greedy and scalable) are also implemented. The
package accommodates more than binary treatments, allowing for any number of categorical
treatments, an important feature for studying combinatorial intervention effects.

TMLE.jl is fully integrated into the broader Julia ecosystem. Machine learning models, including
ensemble learners, can be specified via the MLJ toolbox (Blaom et al., 2020); datasets are
represented as DataFrames (Bouchet-Valat & Kamiński, 2023); and automatic differentiation is
supported through any backend via DifferentiationInterface.jl (Dalle & Hill, 2024). Simulation
datasets from CausalTables.jl (Balkus & Hejazi, 2025) are also directly supported.

In doing so, TMLE.jl fills an important niche for causal inference in Julia, expanding the reach
of TMLE beyond R and contributing to a growing ecosystem of open-source tools for rigorous,
scalable, and reproducible statistical modelling.

Applications to Population Genetics
While TMLE.jl is applicable to a broad range of scientific problems, it was developed with
population genetics in mind, which informed several aspects of its design. Its performance has
been benchmarked in large-scale population genetics simulations and applied to UK Biobank
data (Labayle et al., 2025). In such settings, the number of estimands can reach millions,
posing a challenge for semiparametric estimators that rely on computationally intensive machine
learning procedures. To address this, TMLE.jl implements automatic caching of intermediate
results, enabling substantial computational savings. For example, when estimating the effect
of a single treatment variable across multiple traits, the same propensity score can be reused
across all analyses without recomputation. This mechanism has already been applied to the
discovery of genetic variants affecting human traits via differential binding (submitted), and is
currently being used in studies of genetic variants associated with myalgic encephalomyelitis.
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