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Summary
Powdered materials are ubiquitous in nature and widely used in industries such as food,
cosmetics, and construction. These materials consist of small grains with a broad size and
shape distribution, typically in the micrometer range. Understanding their microscale behavior
requires accurate geometric characterization. Scanning electron microscopy (SEM) provides a
fast and accessible method for imaging powdered materials at this scale. By leveraging the
tilt capabilities of the microscope, along with feature-matching algorithms, it is possible to
reconstruct the three-dimensional (3D) shape of individual grains.

We introduce Miop, a modular pipeline for 3D reconstruction from SEM images. Miop
implements key steps of a 3D reconstruction workflow, including feature matching, estimation
of (intrinsic and extrinsic) camera parameters, and point cloud reconstruction. It models the
image generation process using a scaled orthographic projection and can incorporate microscope
metadata, such as stage tilt and rotation angle. Designed for flexibility, Miop is easily extensible
and modifiable, providing researchers with a practical tool for 3D reconstruction of powdered
materials. An example of a typical reconstruction generated by Miop is illustrated in Figure 1.

Statement of need
3D reconstruction from SEM images is a well-studied problem (Eulitz & Reiss, 2015; Tafti et
al., 2015; Töberg & Reithmeier, 2020). However, to the best of our knowledge, there are no
open-source tools specifically designed for 3D reconstruction from SEM image sets that offer
the flexibility and modularity required for research use. General-purpose 3D reconstruction
libraries such as COLMAP (Schonberger & Frahm, 2016) are tailored to standard perspective
cameras and do not support the specific imaging geometry of electron microscopes. Other
approaches (Töberg & Reithmeier, 2020) are limited in scalability or are not designed to be
extended for custom workflows. Despite active research in 3D reconstruction and SEM imaging,
we are not aware of any new software addressing these specific limitations in recent years.
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Figure 1: Typical Miop input and output. Left: a sample SEM image of a cement grain. Right:
reconstruction using Miop.

Brief software description
The reconstruction problem is formulated as a projection of a 3D scene onto the image plane.
Under a scaled orthographic camera model, the projection of a single three-dimensional point
is given by:
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where 𝑘 defines the scaling, and 𝑠 is a skew parameter. The rotation matrix 𝑅 is determined
by the tilt angle and axis of the microscope stage. This model accurately describes the image
generation process in SEM at high magnification, as discussed in Töberg & Reithmeier (2020).

The matrix 𝐶 fully determines both the intrinsic and extrinsic parameters of the camera. If 𝐶
and 𝑊 are known, the system can be solved using methods such as least squares. When the
axis of rotation of the microscope stage is known, 𝐶 can be reconstructed from the microscope
metadata. For microscopes with eucentric capabilities, a horizontal rotation axis can be
assumed, allowing the rotation matrix 𝑅 to be recovered from the tilt angles. Furthermore, the
scaling factor 𝑘 is determined by the magnification, and the skew parameter 𝑠 can be assumed
to be zero.

If metadata are unavailable or unreliable, the intrinsic and extrinsic parameters of the camera
can be estimated using the factorization method proposed by Poelman and Kanade (Poelman
& Kanade, 1993; Tomasi & Kanade, 1992). This approach factorizes 𝑊 into two matrices
using singular value decomposition (SVD):

𝑊 = (𝑈Σ 1
2 ) (Σ 1

2𝑉 𝑇) = 𝐶𝑆

allowing 𝐶 and 𝑆 to be computed efficiently. However, this decomposition is not unique, as
any invertible 3x3 matrix 𝑄 and its inverse can be inserted between 𝐶 and 𝑆:

𝑊 = 𝐶𝑄𝑄−1𝑆

To recover 𝑄, we solve the following linear system (Poelman & Kanade, 1993; Tomasi &
Kanade, 1992):
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𝑖̂𝑇𝑓𝑄𝑄𝑇𝑗𝑓 = 0

𝑗𝑇𝑓𝑄𝑄𝑇𝑗𝑓 − 𝑖̂𝑇𝑓𝑄𝑄𝑇 𝑖̂𝑓 = 0

where 𝑖̂𝑓 and 𝑗𝑓 are the rows of the camera matrix 𝐶𝑓. Since 𝑄𝑄𝑇 is a 3x3 symmetric matrix,
it has six unique entries. We therefore need at least 3 different images to recover 𝑄𝑄𝑇.
Moreover, to avoid the trivial solution (𝑖̂𝑓 = 0 and 𝑗𝑓 = 0 for all 𝑓), the scaling of the first
camera is set to one (Poelman & Kanade, 1993):

𝑖̂𝑇1𝑄𝑄𝑇 𝑖̂1 = 1.

𝑄 is then obtained from the eigendecomposition of 𝑄𝑄𝑇. The method of Poelman and Kanade
(Poelman & Kanade, 1993) thus allows computing the camera positions from 𝑊.

The matrix 𝑊 is obtained through feature matching. Our pipeline currently uses the RoMa
model (Edstedt et al., 2023), but users can easily integrate other algorithms if better suited to
their specific applications.

Usage and Documentation
The code is hosted on GitLab: https://gitlab.com/miop-project/miop. Installation and usage
instructions are available in the README.md file. An example Jupyter notebook is provided
to visualize intermediate steps of the reconstruction.
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