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Introduction
Longitudinal data, characterised by repeated measurements of variables over time, presents
unique challenges and opportunities in machine learning. This paper introduces Scikit-

Longitudinal, a Python library designed to address these challenges by providing a compre-
hensive set of tools for longitudinal data classification. Built to integrate with the popular
Scikit-learn library, Scikit-Longitudinal offers a robust solution for researchers and prac-
titioners working with longitudinal datasets.

Summary
Scikit-Longitudinal, also abbreviated Sklong, is an open-source Python library that enhances
machine learning for longitudinal data classification and integrates with the Scikit-learn

environment (Pedregosa et al., 2011).

Longitudinal data, which consists of repeated measurements of variables across time points
(referred to as waves (Ribeiro & Freitas, 2019)), is extensively utilised in fields such as medicine
and social sciences. Unlike standard tabular datasets, longitudinal data contains temporal
relationships that necessitate specialised processing (Kelloway & Francis, 2012).

Sklong addresses this with a novel library that includes (Provost & Freitas, 2024):

• Data Preparation: Utilities such as LongitudinalDataset for loading and structuring
data, defining temporal feature groups, and other techniques.

• Data Transformation: Methods to treat the temporal aspect of tabular data, by either
(1) flattening the data into a static representation (i.e., ignoring time indices) for
standard machine learning to be performed (e.g., MarWavTimeMinus, or SepWav), or (2)
keeping the temporal structure (e.g., MerWavTimePlus), yet saving it for later use in
longitudinal-data-aware preprocessing or estimators steps (Ribeiro & Freitas, 2019).

• Preprocessing: Longitudinal-data-aware feature selection primitives, such as CFS-Per-

Group (Pomsuwan & Freitas, 2017), utilising the temporal information in the data to
proceed with feature selection techniques (see feature selection review in (Theng &
Bhoyar, 2024)).

• Estimators: Longitudinal-data-aware classifiers (Kotsiantis et al., 2007; Ribeiro &
Freitas, 2019), such as LexicoRandomForestClassifier (Ribeiro & Freitas, 2024),
LexicoGradientBoostingClassifier, and NestedTreesClassifier (Ovchinnik et al.,
2022), which leverage the temporal structure of the data to ideally enhance classification
performance.

In total, the library implements 1 data preparation method, 4 data transformation meth-
ods, 1 preprocessing method, and 6 estimators, 2 of which have been published as stand-
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alone methods in the literature (the above named LexicoRandomForestClassifier and
NestedTreesClassifier methods).

Sklong emphasises highly-typed, Pythonic code, with substantial test coverage (over 88%)
and comprehensive documentation (over 72%).

Finally, Sklong is available on PyPI. Feel free to explore the official documentation for various
installation methods.

Longitudinal Classification
Longitudinal classification is a variant of the standard classification task where the data
includes features taking values at multiple time points / “waves’’ (Ribeiro & Freitas, 2019),
e.g., cholesterol values measured at different waves. Longitudinal classification is particularly
relevant in biomedical applications, since biomedical data about patients is often collected
across long time periods.

The challenge is to learn a model that predicts the class label (𝑌) for an instance while
accounting for the evolution of features’ values over time, i.e., to learn a predictive model
(classifier function) of the form:

𝑌 ← 𝑓(𝑋1,1, 𝑋1,2,… ,𝑋1,𝑇,… ,𝑋𝐾,1, 𝑋𝐾,2,… ,𝑋𝐾,𝑇)

where 𝑋𝑖,𝑗, for 𝑖 = 1,… ,𝐾 and 𝑗 = 1,… , 𝑇, is the value of the 𝑖-th feature at the 𝑗-th wave
(time point), 𝐾 is the number of features, and 𝑇 is the number of waves. The classifier function
𝑓(⋅) can either operate on a transformed version of the data where temporal information is
“flattened”, allowing the application of standard machine learning algorithms, or handle the
temporal dependencies between a feature’s values across time and between different features
directly. Note that, in the type of longitudinal classification task for which Sklong was designed,
the features are longitudinal, but the class variable is not; i.e., the goal is to predict the class
label of an instance at a single time point (usually the last wave).

There are two broad approaches for coping with longitudinal data (Ribeiro & Freitas, 2019): (1)
Data Transformation: this approach involves preprocessing methods that convert longitudinal
data into a standard, “flattened” non-longitudinal format, enabling the use of any standard,
non-longitudinal classification algorithm on the data but potentially losing relevant information
regarding how a feature’s values change over time. (2) Algorithm Adaptation: this approach
entails modifying classification algorithms to directly handle temporal dependencies inherent
in longitudinal datasets, preserving the temporal dynamics of the data but requiring more
complex tooling.

Statement of Need
To the best of our knowledge, no package in the Scikit-learn ecosystem provides an easy
solution for longitudinal classification. Standard Python libraries, such as Scikit-learn itself,
lack support for longitudinal data, leading to inefficient and inaccurate analysis. R includes
statistical packages for longitudinal data (e.g., nlme (Pinheiro & Bates, 2000), GPBoost (Sigrist,
2022)). However, they often are not suitable for machine learning workflows often created in
Python. On the other hand, systems like Auto-Prognosis (Alaa & Schaar, 2018) concentrate
on longitudinal classification but do not have Scikit-learn’s ease of use. Auto-Prognosis

encompasses more than just longitudinal machine learning, making it difficult to identify and
investigate specific problems. Furthermore, it focuses on algorithm adaptation for prognosis
rather than providing both data transformation and algorithm adaptation paths like Sklong,
which limits user flexibility.
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Given the lack of Python libraries, lack of integration with the popular Scikit-learn API, and
the absence of out-of-the-box solutions for longitudinal classification, there is a clear need for
a library that provides tools for longitudinal data preparation, transformation, preprocessing,
and estimation (model learning).

Limitations and Future Work
At present, Sklong primarily focuses on the classification task and does not yet include support
for regression or neural networks. Future development could expand the library in these
directions.
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