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Summary

ManipulaPy is an open-source Python toolbox that unifies the entire manipulation
pipeline—from URDF parsing to GPU-accelerated dynamics, vision-based perception, planning
and control—within a single API. Built on the Product-of-Exponentials (PoE) model (Lynch
& Park, 2017), PyBullet (Coumans & Bai, 2019), CuPy (Okuta et al., 2017) and custom
CUDA kernels (Liang et al., 2018), the library enables researchers to move from robot
description to real-time control with up to a 40x speedup over CPU implementations.
DOF-agnostic GPU trajectory kernels accelerate 6-DOF and higher manipulators, while
specialized inverse-dynamics prototypes achieve up to 3600 speedups for batch processing.
Performance claims are reproducible via benchmarks in the repository.
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Library

Core Strengths

Integration Challenges

Movelt (Chitta et
al., 2012)

Pinocchio
(Carpentier et al.,
2025)

CuRobo
(Sundaralingam et
al., 2023)

Python Robotics
Toolbox (Corke &
Haviland, 2021)

Mature sampling-based
planners

High-performance PoE
dynamics (C++)

GPU collision checking &
trajectory optimization

Educational algorithms,
clear APIs

Custom ROS nodes for sensor
integration, external plugins for
real-time dynamics, no native GPU
acceleration

CPU-only; perception & planning must
be synchronized manually

Planning-focused; lacks perception
pipeline and closed-loop control

CPU-only; users build
simulation/control /vision components
separately

These integration challenges manifest as sensor-planner gaps, dynamics-control mismatches,
GPU memory fragmentation, and synchronization complexity between components.
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ManipulaPy eliminates these integration burdens through a unified Python API that maintains
data consistency across the entire manipulation pipeline with GPU acceleration throughout.

RGB-D Cameras YOLO detect Back-project DBSCAN cluster
to3-D

Control Layer
PD /PID /
computed-torque

s,
time-scalin
Mass, Coriolis,

Gi, limits
\ IK & Jacobians
optional GPU

CUDA Kernels
cupy / custom

Joint/SE3
trajectory planner

PyBullet sim
1 kHz wrapper

Figure 1: System architecture of ManipulaPy showing the unified manipulation pipeline. The framework
integrates URDF processing, GPU-accelerated kinematics and dynamics, motion planning with collision
avoidance, multiple control strategies, and PyBullet simulation within a single API. Data flows consistently
between components without manual synchronization, while GPU acceleration provides 40x speedup for
trajectory generation and real-time dynamics computation.

Library Architecture

ManipulaPy implements a unified manipulation pipeline with coherent data flow where each
component builds upon shared representations:

Robot Model Processing converts URDF descriptions into PoE representations, extracting
screw axes, mass properties, and joint constraints through PyBullet integration. This creates
fundamental SerialManipulator and ManipulatorDynamics objects used throughout the
system.

Kinematics and Dynamics provide vectorized FK/IK, Jacobians, and GPU-accelerated trajectory
time-scaling that is DOF-agnostic. GPU dynamics kernels are shape-agnostic but simplified
(per-joint/diagonalized), while fully coupled n-DOF spatial dynamics remain on the CPU path
for exactness.

Motion Planning generates collision-free trajectories using GPU-accelerated time-scaling func-
tions, supporting both joint-space and Cartesian-space planning with real-time obstacle avoid-
ance.

Control Systems implement classical (PID, computed torque) and modern (adaptive, robust)
control algorithms with automatic gain tuning, operating on the same dynamic model used in
planning.

Simulation Framework provides PyBullet integration with synchronized camera rendering,
physics simulation, and control execution.
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Vision and Perception Pipeline
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Figure 2: ManipulaPy vision and perception pipeline architecture. The five-stage pipeline processes
raw sensor data from stereo cameras and RGB-D sensors through object detection using YOLO v8,
transforms 2D detections to 3D world coordinates, applies DBSCAN clustering for object segmentation,
and maintains multiple obstacle representations (point clouds, geometric primitives, SDFs) for robot
integration at 5-15 Hz refresh rates during trajectory execution.

ManipulaPy's perception system converts raw sensor data into actionable robot knowledge
through a five-stage pipeline:

Sensor Fusion handles stereo cameras (RGB+depth via OpenCV rectification), RGB-D sensors,
and point cloud input with temporal alignment across sensor types.

Object Detection integrates YOLO v8 (Jocher et al., 2023) for real-time 2D bounding box
detection and supports custom detectors for domain-specific models.

3D Integration transforms pixel coordinates to 3D world positions using camera intrinsics,
performs multi-frame fusion to reduce noise, and applies calibrated transforms to register sensor
data to robot coordinates.

Spatial Clustering applies DBSCAN clustering (Chu et al., 2021) to group 3D points using
e-neighborhoods for object segmentation and generates hierarchical representations.

Robot Integration maintains multiple obstacle representations simultaneously (geometric
primitives, point clouds, SDFs) with 5-15 Hz refresh rates during trajectory execution.

ManipulaPy: GPU-Accelerated Trajectory with Visible Spline (side_view)

Figure 3: GPU-accelerated trajectory execution demonstration in PyBullet simulation. A 6-DOF robotic
manipulator executes a complex trajectory while avoiding dynamic obstacles in real-time. The trajectory
planning utilizes GPU acceleration for 40x speedup over CPU implementation, enabling 1 kHz control
rates with real-time collision avoidance through potential field methods integrated with CUDA kernels.
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Design Considerations

ManipulaPy provides tiered functionality that scales gracefully from CPU-only to GPU-
accelerated operation while maintaining a balance between performance, flexibility, and preci-
sion.

This section outlines the computational tiers, vision dependencies, and design trade-offs that
guided the framework's architecture.

CPU-Only Features

Core robotics modules include URDF processing, forward and inverse kinematics, Jacobian
analysis, small-scale trajectory planning (N < 1000 points), basic control, and simulation setup.
Performance characteristics include single trajectory generation in ~10-50 ms for 6-DOF
robots and real-time control frequencies up to ~100 Hz, primarily limited by Python's Global
Interpreter Lock (GIL).

GPU-Accelerated Features

High-performance modules support large-scale trajectory planning (N > 1000 points) achieving
up to a 40x speedup, batch inverse-dynamics computation, real-time control above 1 kHz,
workspace analysis via Monte Carlo sampling, and GPU-accelerated potential fields.
Performance typically includes large trajectory generation in ~1-5 ms for 6-DOF manipulators,
enabling real-time planning and control at 1 kHz rates.

Vision and Perception Dependencies

Camera and perception functionality rely on OpenCV for camera operations, YOLO models
for object detection, and graphics libraries for visualization.

These dependencies support multi-camera setups, object detection, and spatial clustering but
may require additional system-level libraries that are not always available in containerized
environments.

Performance and Design Trade-offs

= Performance Constraints: Consumer GPUs (8 GB) limit trajectory planning to
approximately 50,000 points. GPU acceleration provides tangible benefits primarily
when N > 1000 due to kernel-launch overhead. CPU-only control performance is
constrained by Python's GIL, limiting real-time execution to ~100 Hz.

= Integration Scope: ManipulaPy operates independently of ROS middleware. While
this ensures modularity, integration with ROS-based systems currently requires manual
bridging.

= Algorithmic Focus: The current implementation focuses on potential-field and
polynomial-interpolation methods. The framework is optimized for serial kinematic
chains, and supporting parallel mechanisms would require architectural adaptation.

= Intended Use: Designed for research and education, ManipulaPy is not intended for

industrial deployment. It does not include safety certifications or formal real-time
verification mechanisms found in production systems.

Future Development

Planned enhancements include native ROS2 integration, advanced sampling-based planners,
multi-robot support with GPU acceleration, direct hardware interfaces, safety monitoring with
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Control Barrier Functions (Morton & Pavone, 2025), and enhanced GPU utilization techniques.
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