
SerializableSimpy: Parallel and Serializable
Discrete-Event Simulation in Python
Pierrick Pochelu 1

1 HPC Platform, University of Luxembourg, Luxembourg
DOI: 10.21105/joss.08502

Software
• Review
• Repository
• Archive

Editor: Prashant Jha
Reviewers:

• @freifrauvonbleifrei
• @EmilyBourne

Submitted: 05 May 2025
Published: 18 February 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
SerializableSimpy is a Python framework for building discrete-event simulations (DES). DES
modeling and analysis are useful in time-sensitive applications, such as manufacturing, logistics,
and distributed systems. The framework provides core DES building blocks, including logical
processes (LPs) and event causality. It also includes components for state and synchronization,
such as stores, resources, and priority queues. Users focus on business logic, not the event-
processing engine. After modeling the system, users can start, pause, and resume.

SerializableSimpy is inspired by SimPy (Zinoviev, 2024) but replaces its generator‑based
execution engine with a serializable design that enables checkpoint/restart and parallel or
distributed runs (Fujimoto, 2017). It preserves familiar modeling abstractions while focusing
on reproducibility and scaling. Unlike SimPy, which relies on non-serializable generator code
(Vassalotti, 2009), SerializableSimpy implements context switches between LPs using standard
Python function calls, with an event queue of Python callables. In other words, code that
would use yield in SimPy is replaced with functions that finish using return.

This design enables:

• Effortless checkpointing and full recovery of simulation state, including LPs and event
queues, using standard serialization tools such as pickle (Python Software Foundation,
2023b). It requires no serialization logic from users.

• Parallel Discrete-Event Simulation (Fujimoto, 2017) using multiprocessing (Python
Software Foundation, 2023a) or mpi4py (Dalcin et al., 2011), with support for inter-
process event exchange through shared memory or message passing.

SerializableSimpy reuses familiar SimPy abstractions where possible, while offering a
fundamentally different execution engine. It is not a drop-in replacement; it is designed for
users who require reproducibility, parallel performance scaling, or integration into networked
systems.

The package includes tutorials, reproduces selected official SimPy examples, and provides
performance comparisons with other DES frameworks.

Statement of Need
SimPy is widely adopted in both academia and industry due to its simplicity and expressiveness.
However, its reliance on Python generators makes it unsuitable for simulations requiring state
checkpointing, multiprocessing, or execution across machines in a computer network. This
limits its use in modern digital twin workflows, especially in large-scale applications.

SerializableSimpy addresses this need by providing a fully serializable DES framework that
offers an API similar to SimPy but avoids generators internally. By replacing generator-based
flow control with callback-based logic, SerializableSimpy enables features such as:

Pochelu. (2026). SerializableSimpy: Parallel and Serializable Discrete-Event Simulation in Python. Journal of Open Source Software, 11(118),
8502. https://doi.org/10.21105/joss.08502.

1

https://orcid.org/0000-0002-3525-5033
https://doi.org/10.21105/joss.08502
https://github.com/openjournals/joss-reviews/issues/8502
https://gitlab.com/uniluxembourg/hpc/research/cadom/serializable-simpy
https://doi.org/10.5281/zenodo.18305470
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/freifrauvonbleifrei
https://github.com/EmilyBourne
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08502


• Running simulations in parallel with inter-process communication
• Event portability across networked systems
• State checkpointing of the simulation environment (and its internal event queue) using

serialization

State of the PDES Field
Over the years, a number of open-source parallel discrete-event simulation (PDES) frameworks
have been developed to efficiently model systems and processes involving very large numbers
of events. While they differ in scope and design, they share a common goal: to provide
software developers and scientists with building blocks for constructing efficient simulators. It is
important to note that these frameworks are not simulators themselves, but rather foundational
components for composing and processing events.

The table below provides an overview of selected general-purpose PDES tools, focusing on
their implementation languages, most recent known activity, and the core parallelization or
decomposition algorithms they employ for event processing. This comparison is intended to
contextualize SerializableSimpy’s contributions within the broader landscape of discrete-event
simulation for large-scale systems.

The selected PDES frameworks are:

• Root-sim (Pellegrini, 2021; Vitali et al., 2012)
• ROSS (Carothers et al., 2022; Gonsiorowski, 2016)
• Simian (Santhi et al., 2015; Seshadri & others, 2023)
• SimX (Los Alamos National Security, LLC, 2014; Thulasidasan et al., 2014)
• SST-core (SST Team, 2024)
• xSim (Böhm & Engelmann, 2011; Poshtkohi, 2024)
• Warped2 (Warped2 Team, 2020)
• Simulus (Liu, 2020; Simulus Team, 2019)
• PowerDEVS (Bergero & Kofman, 2011; Power-devs Team, n.d.)
• Simpy (SimPy team, n.d.; Zinoviev, 2024)
• SerializableSimpy (Pochelu, 2025)

Although SimPy is not primarily intended for parallel simulation, it is included in the table
because of its popularity, expressiveness, and simplicity. It remains a widely used framework
for rapid prototyping and is often the framework of choice for computationally less demanding
simulations.

Name Language Parallel Algorithms
ROOT-sim C Optimistic, anti-messages, DyMeLoR memory manager

(Pellegrini et al., 2009; Toccaceli & Quaglia, 2008)
___________________________________________________________
ROSS C Optimistic & conservative, LZA compression
___________________________________________________________
Simian Lua, Python, JS Conservative, some optimistic support, GPU, Greenlet

(Greenlet Team, 2024)
___________________________________________________________
SimX C++, Python Conservative, Greenlet (Greenlet Team, 2024)
___________________________________________________________
SST-core C++ Conservative, threading, graph-based LP organization
___________________________________________________________
xSim C, Fortran Optimistic w/o rollback; METIS, topological sort,

Tarjan (Tarjan, 1972)
___________________________________________________________
Warped2 C++ Optimistic, Ladder Queue (Tang et al., 2005), METIS

Pochelu. (2026). SerializableSimpy: Parallel and Serializable Discrete-Event Simulation in Python. Journal of Open Source Software, 11(118),
8502. https://doi.org/10.21105/joss.08502.

2

https://doi.org/10.21105/joss.08502


Name Language Parallel Algorithms
___________________________________________________________
Simulus Python YAWNS sync protocol (Nicol, 1993), Greenlet (Greenlet

Team, 2024)
___________________________________________________________
PowerDEVS C++ Conservative, hierarchical model construction, real-time

target
___________________________________________________________
Simpy Python N/A
___________________________________________________________
SerializableSimpy Python Conservative

Experimental highlights (token-ring benchmark):

• Familiar, rich API: 19 classes at publication time, inspired by SimPy’s 35 classes; other
frameworks include Simian (7 classes) and Simulus (15 classes)

• Compact event semantics for scale: ~1M events in the benchmark vs ~4M for SimPy,
~1M for Simian, ~2M for Simulus — fewer queue operations overall

• Fastest runtime: best initialization and main-loop times, driven by fewer event operations
and efficient heapq-based priority queues

• Parallel-ready: supports multiprocessing and MPI backends

Detailed scripts and results: https://gitlab.com/uniluxembourg/hpc/research/cadom/
serializable-simpy/-/blob/main/application/pdes_compare/README.md

Although Simian and SimX also provide conservative PDES kernels accessible from Python,
SerializableSimpy’s key differentiator is that it targets not only scalability but also end-to-end
performance, while equipping users with a richer, SimPy-inspired set of modeling classes.

Past and Ongoing Research Use
SerializableSimpy was developed as part of a research collaboration between the University of
Luxembourg and the Goodyear Company. It is currently being integrated into workflows for
decomposed, large-scale discrete-event manufacturing simulations, enabling execution through
parallel logical processes on multi-core or networked environments. Its simple Python API
and minimal software dependencies facilitate rapid prototyping and experimentation. These
lightweight dependencies are compatible with Python Just-In-Time (JIT) compilers and have
been tested with Bolz et al. (2009), enhancing performance for many multi-core and distributed
workloads.

While SerializableSimpy provides examples and tools to facilitate parallel execution with minimal
user effort, users are still required to manually decompose simulations and assign tasks to
processing cores. To reduce this burden, ongoing research explores graph-based decomposition
techniques (Karypis & Kumar, 1998), with the goal of automating partitioning and enhancing
scalability, evaluated on large-scale manufacturing simulations.

Acknowledgment
The contributors to SerializableSimpy thank Goodyear and the University of Luxembourg for
their valuable collaboration and discussions. This work was supported by the Luxembourg
National Research Fund and the Ministry of Economy (MECO) under grant number 17941664.
The contributors also thank the EuroHPC Joint Undertaking and LuxProvide for granting
access to the MeluXina supercomputer.

Pochelu. (2026). SerializableSimpy: Parallel and Serializable Discrete-Event Simulation in Python. Journal of Open Source Software, 11(118),
8502. https://doi.org/10.21105/joss.08502.

3

https://gitlab.com/uniluxembourg/hpc/research/cadom/serializable-simpy/-/blob/main/application/pdes_compare/README.md
https://gitlab.com/uniluxembourg/hpc/research/cadom/serializable-simpy/-/blob/main/application/pdes_compare/README.md
https://doi.org/10.21105/joss.08502


References
Bergero, F., & Kofman, E. (2011). PowerDEVS: A tool for hybrid system modeling and real-

time simulation. SIMULATION, 87, 113–132. https://doi.org/10.1177/0037549710368029

Böhm, S., & Engelmann, C. (2011). xSim: The extreme-scale simulator. 2011 International
Conference on High Performance Computing & Simulation, 280–286. https://doi.org/10.
1109/HPCSim.2011.5999835

Bolz, C. F., Cuni, A., Fijalkowski, M., & Rigo, A. (2009). Tracing the meta-level: PyPy’s
tracing JIT compiler. Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, 18–25. https:
//doi.org/10.1145/1565824.1565827

Carothers, C. D., Perumalla, K. S., & Fujimoto, R. M. (2022). Rensselaer’s optimistic
simulation system. https://ross-org.github.io/

Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel distributed computing
using Python. Advances in Water Resources, 34(9), 1124–1139. https://doi.org/10.1016/
j.advwatres.2011.04.013

Fujimoto, R. M. (2017). Parallel discrete event simulation: The making of a field. In
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, & E. Page
(Eds.), Proceedings of the 2017 winter simulation conference (pp. 262–276). IEEE Press.
https://doi.org/10.1109/WSC.2017.8247783

Gonsiorowski, E. (2016). Enabling extreme-scale circuit modeling using massively parallel
discrete-event simulations [Electronic thesis, Rensselaer Polytechnic Institute]. https:
//hdl.handle.net/20.500.13015/1686

Greenlet Team. (2024). Greenlet documentation. https://greenlet.readthedocs.io/en/latest/

Karypis, G., & Kumar, V. (1998). METIS: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices.
University of Minnesota, 102. https://conservancy.umn.edu/items/2f610239-590c-45c0-
bcd6-321036aaad56

Liu, J. (2020). Simulus: Easy breezy simulation in Python. 2020 Winter Simulation Conference
(WSC), 2329–2340. https://doi.org/10.1109/WSC48552.2020.9383886

Los Alamos National Security, LLC. (2014). SimX: Parallel discrete-event simulation library
with Python frontend and C++ backend. In GitHub repository. GitHub. https://github.
com/sim-x/simx

Nicol, D. M. (1993). The cost of conservative synchronization in parallel discrete event
simulations. J. ACM, 40(2), 304–333. https://doi.org/10.1145/151261.151266

Pellegrini, A. (2021). ROOT-Sim: The ROme OpTimistic Simulator. In GitHub repository.
GitHub. https://root-sim.github.io/core/

Pellegrini, A., Vitali, R., & Quaglia, F. (2009). Di-DyMeLoR: Logging only dirty chunks
for efficient management of dynamic memory based optimistic simulation objects. 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation,
45–53. https://doi.org/10.1109/PADS.2009.24

Pochelu, P. (2025). Serializable-simpy. In GitLab repository. GitLab. https://gitlab.com/
uniluxembourg/hpc/research/cadom/serializable-simpy

Poshtkohi, A. (2024). Pdes: Parallel discrete event simulation framework. In GitHub repository.
GitHub. https://github.com/poshtkohi/pdes

Power-devs Team. (n.d.). CIFASIS/power-devs: PowerDEVS is an integrated tool for hybrid

Pochelu. (2026). SerializableSimpy: Parallel and Serializable Discrete-Event Simulation in Python. Journal of Open Source Software, 11(118),
8502. https://doi.org/10.21105/joss.08502.

4

https://doi.org/10.1177/0037549710368029
https://doi.org/10.1109/HPCSim.2011.5999835
https://doi.org/10.1109/HPCSim.2011.5999835
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://ross-org.github.io/
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1109/WSC.2017.8247783
https://hdl.handle.net/20.500.13015/1686
https://hdl.handle.net/20.500.13015/1686
https://greenlet.readthedocs.io/en/latest/
https://conservancy.umn.edu/items/2f610239-590c-45c0-bcd6-321036aaad56
https://conservancy.umn.edu/items/2f610239-590c-45c0-bcd6-321036aaad56
https://doi.org/10.1109/WSC48552.2020.9383886
https://github.com/sim-x/simx
https://github.com/sim-x/simx
https://doi.org/10.1145/151261.151266
https://root-sim.github.io/core/
https://doi.org/10.1109/PADS.2009.24
https://gitlab.com/uniluxembourg/hpc/research/cadom/serializable-simpy
https://gitlab.com/uniluxembourg/hpc/research/cadom/serializable-simpy
https://github.com/poshtkohi/pdes
https://doi.org/10.21105/joss.08502


systems modeling and simulation based on the DEVS formalism. https://github.com/
CIFASIS/power-devs

Python Software Foundation. (2023a). Multiprocessing — process-based parallelism. https:
//docs.python.org/3/library/multiprocessing.html

Python Software Foundation. (2023b). Pickle — Python object serialization. https://docs.
python.org/3/library/pickle.html

Santhi, N., Eidenbenz, S., & Liu, J. (2015). The simian concept: Parallel discrete event
simulation with interpreted languages and just-in-time compilation. 2015 Winter Simulation
Conference (WSC), 3013–3024. https://doi.org/10.1109/WSC.2015.7408405

Seshadri, P., & others. (2023). Simian: A fast parallel discrete event simulation engine. In
GitHub repository. GitHub. https://github.com/pujyam/simian

SimPy team. (n.d.). SimPy. In GitLab repository. GitLab. https://gitlab.com/team-
simpy/simpy/

Simulus Team. (2019). Simulus - a discrete-event simulator in Python. In GitHub repository.
GitHub. https://github.com/liuxfiu/simulus

SST Team. (2024). SST core: Structural simulation toolkit parallel discrete event core and
services. In GitHub repository. GitHub. https://github.com/sstsimulator/sst-core

Tang, W. T., Goh, R. S. M., & Thng, I. L.-J. (2005). Ladder queue: An O(1) priority queue
structure for large-scale discrete event simulation. ACM Trans. Model. Comput. Simul.,
15(3), 175–204. https://doi.org/10.1145/1103323.1103324

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2), 146–160. https://doi.org/10.1137/0201010

Thulasidasan, S., Kroc, L., & Eidenbenz, S. (2014). Developing parallel, discrete event
simulations in Python - first results and user experiences with the SimX library. 2014 4th
International Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH), 188–194. https://doi.org/10.5220/0005042701880194

Toccaceli, R., & Quaglia, F. (2008). DyMeLoR: Dynamic memory logger and restorer library for
optimistic simulation objects with generic memory layout. 2008 22nd Workshop on Principles
of Advanced and Distributed Simulation, 163–172. https://doi.org/10.1109/PADS.2008.23

Vassalotti, A. (2009). Why you cannot pickle generators. https://peadrop.com/blog/2009/
12/29/why-you-cannot-pickle-generators/

Vitali, R., Pellegrini, A., & Cerasuolo, G. (2012, March). Cache-aware memory manager for
optimistic simulations. Proceedings of SIMUTools 2012 - 5th International Conference on
Simulation Tools and Techniques. https://doi.org/10.4108/icst.simutools.2012.247766

Warped2 Team. (2020). Warped2: warped simulation kernel. In GitHub repository. GitHub.
https://github.com/wilseypa/warped2/

Zinoviev, D. (2024). Discrete event simulation: It’s easy with SimPy! https://arxiv.org/abs/
2405.01562

Pochelu. (2026). SerializableSimpy: Parallel and Serializable Discrete-Event Simulation in Python. Journal of Open Source Software, 11(118),
8502. https://doi.org/10.21105/joss.08502.

5

https://github.com/CIFASIS/power-devs
https://github.com/CIFASIS/power-devs
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1109/WSC.2015.7408405
https://github.com/pujyam/simian
https://gitlab.com/team-simpy/simpy/
https://gitlab.com/team-simpy/simpy/
https://github.com/liuxfiu/simulus
https://github.com/sstsimulator/sst-core
https://doi.org/10.1145/1103323.1103324
https://doi.org/10.1137/0201010
https://doi.org/10.5220/0005042701880194
https://doi.org/10.1109/PADS.2008.23
https://peadrop.com/blog/2009/12/29/why-you-cannot-pickle-generators/
https://peadrop.com/blog/2009/12/29/why-you-cannot-pickle-generators/
https://doi.org/10.4108/icst.simutools.2012.247766
https://github.com/wilseypa/warped2/
https://arxiv.org/abs/2405.01562
https://arxiv.org/abs/2405.01562
https://doi.org/10.21105/joss.08502

	Summary
	Statement of Need
	State of the PDES Field
	Past and Ongoing Research Use
	Acknowledgment
	References

