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Summary
SerializableSimpy is a Python framework for building discrete-event simulations (DES). DES
modeling and analysis are useful in time-sensitive applications, such as manufacturing, logistics,
and distributed systems. The framework provides core DES building blocks, including logical
processes (LPs) and event causality. It also includes components for state and synchronization,
such as stores, resources, and priority queues. Users focus on business logic, not the event-
processing engine. After modeling the system, users can start, pause, and resume.

SerializableSimpy is inspired by SimPy (Zinoviev, 2024) but replaces its generator‑based
execution engine with a serializable design that enables checkpoint/restart and parallel or
distributed runs (Fujimoto, 2017). It preserves familiar modeling abstractions while focusing
on reproducibility and scaling. Unlike SimPy, which relies on non-serializable generator code
(Vassalotti, 2009), SerializableSimpy implements context switches between LPs using standard
Python function calls, with an event queue of Python callables. In other words, code that
would use yield in SimPy is replaced with functions that finish using return.

This design enables:

• Effortless checkpointing and full recovery of simulation state, including LPs and event
queues, using standard serialization tools such as pickle (Python Software Foundation,
2023b). It requires no serialization logic from users.

• Parallel Discrete-Event Simulation (Fujimoto, 2017) using multiprocessing (Python
Software Foundation, 2023a) or mpi4py (Dalcin et al., 2011), with support for inter-
process event exchange through shared memory or message passing.

SerializableSimpy reuses familiar SimPy abstractions where possible, while offering a
fundamentally different execution engine. It is not a drop-in replacement; it is designed for
users who require reproducibility, parallel performance scaling, or integration into networked
systems.

The package includes tutorials, reproduces selected official SimPy examples, and provides
performance comparisons with other DES frameworks.

Statement of Need
SimPy is widely adopted in both academia and industry due to its simplicity and expressiveness.
However, its reliance on Python generators makes it unsuitable for simulations requiring state
checkpointing, multiprocessing, or execution across machines in a computer network. This
limits its use in modern digital twin workflows, especially in large-scale applications.

SerializableSimpy addresses this need by providing a fully serializable DES framework that
offers an API similar to SimPy but avoids generators internally. By replacing generator-based
flow control with callback-based logic, SerializableSimpy enables features such as:
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• Running simulations in parallel with inter-process communication
• Event portability across networked systems
• State checkpointing of the simulation environment (and its internal event queue) using

serialization

State of the PDES Field
Over the years, a number of open-source parallel discrete-event simulation (PDES) frameworks
have been developed to efficiently model systems and processes involving very large numbers
of events. While they differ in scope and design, they share a common goal: to provide
software developers and scientists with building blocks for constructing efficient simulators. It is
important to note that these frameworks are not simulators themselves, but rather foundational
components for composing and processing events.

The table below provides an overview of selected general-purpose PDES tools, focusing on
their implementation languages, most recent known activity, and the core parallelization or
decomposition algorithms they employ for event processing. This comparison is intended to
contextualize SerializableSimpy’s contributions within the broader landscape of discrete-event
simulation for large-scale systems.

The selected PDES frameworks are:

• Root-sim (Pellegrini, 2021; Vitali et al., 2012)
• ROSS (Carothers et al., 2022; Gonsiorowski, 2016)
• Simian (Santhi et al., 2015; Seshadri & others, 2023)
• SimX (Los Alamos National Security, LLC, 2014; Thulasidasan et al., 2014)
• SST-core (SST Team, 2024)
• xSim (Böhm & Engelmann, 2011; Poshtkohi, 2024)
• Warped2 (Warped2 Team, 2020)
• Simulus (Liu, 2020; Simulus Team, 2019)
• PowerDEVS (Bergero & Kofman, 2011; Power-devs Team, n.d.)
• Simpy (SimPy team, n.d.; Zinoviev, 2024)
• SerializableSimpy (Pochelu, 2025)

Although SimPy is not primarily intended for parallel simulation, it is included in the table
because of its popularity, expressiveness, and simplicity. It remains a widely used framework
for rapid prototyping and is often the framework of choice for computationally less demanding
simulations.

Name Language Parallel Algorithms
ROOT-sim C Optimistic, anti-messages, DyMeLoR memory manager

(Pellegrini et al., 2009; Toccaceli & Quaglia, 2008)
___________________________________________________________
ROSS C Optimistic & conservative, LZA compression
___________________________________________________________
Simian Lua, Python, JS Conservative, some optimistic support, GPU, Greenlet

(Greenlet Team, 2024)
___________________________________________________________
SimX C++, Python Conservative, Greenlet (Greenlet Team, 2024)
___________________________________________________________
SST-core C++ Conservative, threading, graph-based LP organization
___________________________________________________________
xSim C, Fortran Optimistic w/o rollback; METIS, topological sort,

Tarjan (Tarjan, 1972)
___________________________________________________________
Warped2 C++ Optimistic, Ladder Queue (Tang et al., 2005), METIS
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Name Language Parallel Algorithms
___________________________________________________________
Simulus Python YAWNS sync protocol (Nicol, 1993), Greenlet (Greenlet

Team, 2024)
___________________________________________________________
PowerDEVS C++ Conservative, hierarchical model construction, real-time

target
___________________________________________________________
Simpy Python N/A
___________________________________________________________
SerializableSimpy Python Conservative

Experimental highlights (token-ring benchmark):

• Familiar, rich API: 19 classes at publication time, inspired by SimPy’s 35 classes; other
frameworks include Simian (7 classes) and Simulus (15 classes)

• Compact event semantics for scale: ~1M events in the benchmark vs ~4M for SimPy,
~1M for Simian, ~2M for Simulus — fewer queue operations overall

• Fastest runtime: best initialization and main-loop times, driven by fewer event operations
and efficient heapq-based priority queues

• Parallel-ready: supports multiprocessing and MPI backends

Detailed scripts and results: https://gitlab.com/uniluxembourg/hpc/research/cadom/
serializable-simpy/-/blob/main/application/pdes_compare/README.md

Although Simian and SimX also provide conservative PDES kernels accessible from Python,
SerializableSimpy’s key differentiator is that it targets not only scalability but also end-to-end
performance, while equipping users with a richer, SimPy-inspired set of modeling classes.

Past and Ongoing Research Use
SerializableSimpy was developed as part of a research collaboration between the University of
Luxembourg and the Goodyear Company. It is currently being integrated into workflows for
decomposed, large-scale discrete-event manufacturing simulations, enabling execution through
parallel logical processes on multi-core or networked environments. Its simple Python API
and minimal software dependencies facilitate rapid prototyping and experimentation. These
lightweight dependencies are compatible with Python Just-In-Time (JIT) compilers and have
been tested with Bolz et al. (2009), enhancing performance for many multi-core and distributed
workloads.

While SerializableSimpy provides examples and tools to facilitate parallel execution with minimal
user effort, users are still required to manually decompose simulations and assign tasks to
processing cores. To reduce this burden, ongoing research explores graph-based decomposition
techniques (Karypis & Kumar, 1998), with the goal of automating partitioning and enhancing
scalability, evaluated on large-scale manufacturing simulations.
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