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Summary

Identifying optimal policies for replenishing inventory from multiple suppliers is a key problem in
inventory management. Solving such optimization problems requires determining the quantities
to order from each supplier based on the current inventory and outstanding orders, minimizing
the expected ordering, holding, and out-of-stock costs. Despite over 60 years of extensive
research on inventory management problems, even fundamental dual-sourcing problems—where
orders from an expensive supplier arrive faster than orders from a low-cost supplier—remain
analytically intractable (Barankin, 1961; Fukuda, 1964). Additionally, there is a growing interest
in optimization algorithms that can handle real-world inventory problems with non-stationary
demand (Song et al., 2020).

We provide a Python package, idinn, which implements inventory dynamics-informed neural
networks designed to control both single-sourcing and dual-sourcing problems. In single-
sourcing problems, a single supplier delivers an ordered quantity to a firm within a known
lead time and at a known unit cost. In dual-sourcing problems, which are more complex, a
company has two potential suppliers of a product, each with different known lead times and
unit costs. The objective is to place orders that minimize the expected order, inventory, and
out-of-stock costs over a finite or infinite horizon. idinn implements neural network controllers
and inventory dynamics as customizable objects using PyTorch as the backend, allowing users
to identify near-optimal ordering policies with reasonable computational resources.

The methods used in idinn take advantage of advances in automatic differentiation (Paszke
et al., 2019, 2017) and the growing use of neural networks in dynamical system identification
(Chen et al., 2018; Fronk & Petzold, 2023; Wang & Lin, 1998) and control (Asikis et al., 2022;
Bottcher et al., 2022, 2025; Bottcher, 2023; Bottcher & Asikis, 2022; Mowlavi & Nabi, 2023).

Statement of need

Inventory management problems arise in many industries, including manufacturing, retail,
warehousing, and energy. A fundamental but analytically intractable inventory management
problem is dual sourcing (Barankin, 1961; Fukuda, 1964; Xin & Van Mieghem, 2023). Single
sourcing, in contrast, is analytically tractable and is frequently employed as a baseline for testing
and comparing policies used in more complex multi-sourcing setups. idinn is a Python package
for controlling both dual-sourcing and single-sourcing problems using dynamics-informed neural
networks. The sourcing problems we consider are usually formulated as infinite-horizon problems
focusing on minimizing average cost while considering stationary stochastic demand. Using
neural networks, we minimize costs over multiple demand trajectories. This approach allows
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us to address not only non-stationary demand, but also finite-horizon and infinite-horizon
discounted problems. Unlike traditional reinforcement-learning approaches, our optimization
approach takes into account how the system to be optimized behaves over time, leading to
more efficient training and accurate solutions.

Training neural networks for inventory-dynamics control presents a unique challenge. The
adjustment of neural network weights during training relies on propagating real-valued gradients,
while the neural network outputs - representing replenishment orders - must be integers. To
address this challenge in optimizing a discrete problem with real-valued gradient-descent
learning algorithms, we apply a problem-tailored straight-through estimator (Asikis, 2023; Dyer
et al., 2023; Yang et al., 2022). This approach enables us to obtain integer-valued neural
network outputs while backpropagating real-valued gradients.

While general-purpose reinforcement learning libraries like Stable Baselines3 (Raffin et al.,
2021) support policy optimization, they do not offer inventory-specific modeling or enforce
integer constraints required for replenishment decisions. A related, more specialized library,
ddop (Philippi et al., 2021), focuses on machine learning for operations management, but
does not address multi-period inventory dynamics. Abmarl (Rusu & Glatt, 2021) connects
multi-agent reinforcement learning with agent-based simulations. In contrast, idinn is tailored
to single- and dual-sourcing problems, combining domain-specific inventory dynamics with
neural networks and integer-constrained outputs.

idinn has been developed for researchers, practitioners, and students working at the intersection
of optimization, operations research, and machine learning. It has been made available to
students in a machine learning course at the Frankfurt School of Finance & Management, as
well as in a tutorial at the California State University, Northridge. In a previous publication
(Bottcher et al., 2023), a proof-of-concept codebase was used to compute near-optimal
solutions of dozens of dual-sourcing instances.

Example usage

As an example, we describe how to solve single-sourcing problems using idinn. Excess inventory
incurs a holding cost h, while unmet demand results in an out-of-stock cost b. With idinn,
we initialize the sourcing model and neural network controller, train the controller on cost
data from the model, and use the trained controller to compute near-optimal, state-dependent
order quantities.

Initialization
We use the SingleSourcingModel class to initialize a single-sourcing model.

import torch

from idinn.sourcing_model import SingleSourcingModel

from idinn.single_controller import SingleSourcingNeuralController
from idinn.demand import UniformDemand

single_sourcing_model = SingleSourcingModel(
lead_time=0,
holding_cost=5,
shortage_cost=495,
batch_size=32,
init_inventory=10,
demand_generator=UniformDemand(low=0, high=4)

)

This single-sourcing model has a lead time of 0 (i.e., an order arrives immediately after it is
placed) and an initial inventory of 10. The holding cost, h, and the out-of-stock cost, b, are 5
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and 495, respectively. Demand is drawn from a discrete uniform distribution over the integers
{0,1,...,4}. We use a batch size of 32 to train the neural network, i.e., the sourcing model
generates 32 samples simultaneously.

To identify an ordering policy that minimizes total costs over a given time horizon, we initialize
a neural network controller using the SingleSourcingNeuralController class. For illustration
purposes, we use a simple neural network with 1 hidden layer and 2 neurons. The activation
function is torch.nn.CELU(alpha=1).

single_controller = SingleSourcingNeuralController(
hidden_layers=[2],
activation=torch.nn.CELU(alpha=1)

Training

We train the neural network controller using the fit() method. To monitor the training
process, we specify the tensorboard_writer parameter:

from torch.utils.tensorboard import SummaryWriter

single_controller.fit(
sourcing_model=single_sourcing_model,
sourcing_periods=50,
validation_sourcing_periods=1000,
epochs=2000,
tensorboard_writer=SummaryWriter(comment="_single_1"),
seed=1

)

To evaluate the neural network controller, we compute the average cost over a specified number
of periods for the previously defined sourcing model:

single_controller.get_average_cost(single_sourcing_model, sourcing_periods=1000)

For the selected single-sourcing parameters, the optimal average cost is 10.
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Figure 1: Evolution of inventory and orders for a neural network controller applied to single-sourcing
dynamics.

To further evaluate a controller's performance in a given sourcing environment, users can
visualize the inventory and order histories (see Figure 1):
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single_controller.plot(sourcing_model=single_sourcing_model, sourcing_periods=100)

Order calculation

For a given inventory level and trained controller, we use the predict function to compute the
corresponding orders:

single_controller.predict(current_inventory=10)

Additional control methods

In addition to the neural network control method, single-sourcing dynamics can also be managed
using a traditional base-stock controller (Arrow et al., 1951; Scarf & Karlin, 1958), available
in idinn as the BaseStockController class.

For dual-sourcing problems, idinn supports both neural and classical control approaches. Neural
control is provided through the DualSourcingModel and DualSourcingNeuralController
classes. Classical methods include the capped dual index controller (Sun & Van Mieghem, 2019)
and a dynamic programming-based controller, implemented in the CappedDualIndexController
and DynamicProgrammingController classes, respectively.
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