The Journal of Open Source Software

DOI: 10.21105/joss.08508

Software
= Review 7
= Repository &
= Archive 7

Editor: Evan Spotte-Smith @
Reviewers:

= @arnaugb
= ©@0ak97

Submitted: 17 April 2025
Published: 21 August 2025

License

Authors of papers retain copyright

and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

idinn: A Python Package for Inventory-Dynamics
Control with Neural Networks

Jiawei Li® 'Y, Thomas Asikis ©2, loannis Fragkos ® 23, and Lucas
Bottcher © 14

1 Department of Computational Science and Philosophy, Frankfurt School of Finance and Management
2 Game Theory, University of Zurich 3 Department of Technology and Operations Management,
Rotterdam School of Management, Erasmus University Rotterdam 4 Laboratory for Systems Medicine,
Department of Medicine, University of Florida § Corresponding author

Summary

Identifying optimal policies for replenishing inventory from multiple suppliers is a key problem in
inventory management. Solving such optimization problems requires determining the quantities
to order from each supplier based on the current inventory and outstanding orders, minimizing
the expected ordering, holding, and out-of-stock costs. Despite over 60 years of extensive
research on inventory management problems, even fundamental dual-sourcing problems—where
orders from an expensive supplier arrive faster than orders from a low-cost supplier—remain
analytically intractable (Barankin, 1961; Fukuda, 1964). Additionally, there is a growing interest
in optimization algorithms that can handle real-world inventory problems with non-stationary
demand (Song et al., 2020).

We provide a Python package, idinn, which implements inventory dynamics-informed neural
networks designed to control both single-sourcing and dual-sourcing problems. In single-
sourcing problems, a single supplier delivers an ordered quantity to a firm within a known
lead time and at a known unit cost. In dual-sourcing problems, which are more complex, a
company has two potential suppliers of a product, each with different known lead times and
unit costs. The objective is to place orders that minimize the expected order, inventory, and
out-of-stock costs over a finite or infinite horizon. idinn implements neural network controllers
and inventory dynamics as customizable objects using PyTorch as the backend, allowing users
to identify near-optimal ordering policies with reasonable computational resources.

The methods used in idinn take advantage of advances in automatic differentiation (Paszke
et al., 2019, 2017) and the growing use of neural networks in dynamical system identification
(Chen et al., 2018; Fronk & Petzold, 2023; Wang & Lin, 1998) and control (Asikis et al., 2022;
Bottcher et al., 2022, 2025; Bottcher, 2023; Bottcher & Asikis, 2022; Mowlavi & Nabi, 2023).

Statement of need

Inventory management problems arise in many industries, including manufacturing, retail,
warehousing, and energy. A fundamental but analytically intractable inventory management
problem is dual sourcing (Barankin, 1961; Fukuda, 1964; Xin & Van Mieghem, 2023). Single
sourcing, in contrast, is analytically tractable and is frequently employed as a baseline for testing
and comparing policies used in more complex multi-sourcing setups. idinn is a Python package
for controlling both dual-sourcing and single-sourcing problems using dynamics-informed neural
networks. The sourcing problems we consider are usually formulated as infinite-horizon problems
focusing on minimizing average cost while considering stationary stochastic demand. Using
neural networks, we minimize costs over multiple demand trajectories. This approach allows

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 1
https://doi.org/10.21105/joss.08508.


https://orcid.org/0009-0004-1605-8968
https://orcid.org/0000-0003-0163-4622
https://orcid.org/0000-0001-7654-2314
https://orcid.org/0000-0003-1700-1897
https://doi.org/10.21105/joss.08508
https://github.com/openjournals/joss-reviews/issues/8508
https://gitlab.com/ComputationalScience/idinn
https://doi.org/10.5281/zenodo.16784771
https://espottesmith.github.io
https://orcid.org/0000-0003-1554-197X
https://github.com/arnauqb
https://github.com/oak97
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08508

The Journal of Open Source Software

us to address not only non-stationary demand, but also finite-horizon and infinite-horizon
discounted problems. Unlike traditional reinforcement-learning approaches, our optimization
approach takes into account how the system to be optimized behaves over time, leading to
more efficient training and accurate solutions.

Training neural networks for inventory-dynamics control presents a unique challenge. The
adjustment of neural network weights during training relies on propagating real-valued gradients,
while the neural network outputs - representing replenishment orders - must be integers. To
address this challenge in optimizing a discrete problem with real-valued gradient-descent
learning algorithms, we apply a problem-tailored straight-through estimator (Asikis, 2023; Dyer
et al., 2023; Yang et al., 2022). This approach enables us to obtain integer-valued neural
network outputs while backpropagating real-valued gradients.

While general-purpose reinforcement learning libraries like Stable Baselines3 (Raffin et al.,
2021) support policy optimization, they do not offer inventory-specific modeling or enforce
integer constraints required for replenishment decisions. A related, more specialized library,
ddop (Philippi et al., 2021), focuses on machine learning for operations management, but
does not address multi-period inventory dynamics. Abmarl (Rusu & Glatt, 2021) connects
multi-agent reinforcement learning with agent-based simulations. In contrast, idinn is tailored
to single- and dual-sourcing problems, combining domain-specific inventory dynamics with
neural networks and integer-constrained outputs.

idinn has been developed for researchers, practitioners, and students working at the intersection
of optimization, operations research, and machine learning. It has been made available to
students in a machine learning course at the Frankfurt School of Finance & Management, as
well as in a tutorial at the California State University, Northridge. In a previous publication
(Bottcher et al., 2023), a proof-of-concept codebase was used to compute near-optimal
solutions of dozens of dual-sourcing instances.

Example usage

As an example, we describe how to solve single-sourcing problems using idinn. Excess inventory
incurs a holding cost h, while unmet demand results in an out-of-stock cost b. With idinn,
we initialize the sourcing model and neural network controller, train the controller on cost
data from the model, and use the trained controller to compute near-optimal, state-dependent
order quantities.

Initialization
We use the SingleSourcingModel class to initialize a single-sourcing model.

import torch

from idinn.sourcing_model import SingleSourcingModel

from idinn.single_controller import SingleSourcingNeuralController
from idinn.demand import UniformDemand

single_sourcing_model = SingleSourcingModel(
lead_time=0,
holding_cost=5,
shortage_cost=495,
batch_size=32,
init_inventory=10,
demand_generator=UniformDemand(low=0, high=4)

)

This single-sourcing model has a lead time of 0 (i.e., an order arrives immediately after it is
placed) and an initial inventory of 10. The holding cost, h, and the out-of-stock cost, b, are 5

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 2
https://doi.org/10.21105/joss.08508.


https://doi.org/10.21105/joss.08508

The Journal of Open Source Software

and 495, respectively. Demand is drawn from a discrete uniform distribution over the integers
{0,1,...,4}. We use a batch size of 32 to train the neural network, i.e., the sourcing model
generates 32 samples simultaneously.

To identify an ordering policy that minimizes total costs over a given time horizon, we initialize
a neural network controller using the SingleSourcingNeuralController class. For illustration
purposes, we use a simple neural network with 1 hidden layer and 2 neurons. The activation
function is torch.nn.CELU(alpha=1).

single_controller = SingleSourcingNeuralController(
hidden_layers=[2],
activation=torch.nn.CELU(alpha=1)

Training

We train the neural network controller using the fit() method. To monitor the training
process, we specify the tensorboard_writer parameter:

from torch.utils.tensorboard import SummaryWriter

single_controller.fit(
sourcing_model=single_sourcing_model,
sourcing_periods=50,
validation_sourcing_periods=1000,
epochs=2000,
tensorboard_writer=SummaryWriter(comment="_single_1"),
seed=1

)

To evaluate the neural network controller, we compute the average cost over a specified number
of periods for the previously defined sourcing model:

single_controller.get_average_cost(single_sourcing_model, sourcing_periods=1000)

For the selected single-sourcing parameters, the optimal average cost is 10.

Inventory Order
12 4 4
10 1
3 B
8 4
z z
S 6 € 21
=] 3
& (o]
4 B
1 B
2 4
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Period Period

Figure 1: Evolution of inventory and orders for a neural network controller applied to single-sourcing
dynamics.

To further evaluate a controller's performance in a given sourcing environment, users can
visualize the inventory and order histories (see Figure 1):

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 3
https://doi.org/10.21105/joss.08508.


https://doi.org/10.21105/joss.08508

The Journal of Open Source Software

single_controller.plot(sourcing_model=single_sourcing_model, sourcing_periods=100)

Order calculation

For a given inventory level and trained controller, we use the predict function to compute the
corresponding orders:

single_controller.predict(current_inventory=10)

Additional control methods

In addition to the neural network control method, single-sourcing dynamics can also be managed
using a traditional base-stock controller (Arrow et al., 1951; Scarf & Karlin, 1958), available
in idinn as the BaseStockController class.

For dual-sourcing problems, idinn supports both neural and classical control approaches. Neural
control is provided through the DualSourcingModel and DualSourcingNeuralController
classes. Classical methods include the capped dual index controller (Sun & Van Mieghem, 2019)
and a dynamic programming-based controller, implemented in the CappedDualIndexController
and DynamicProgrammingController classes, respectively.

Acknowledgements

LB acknowledges financial support from hessian.Al and the Army Research Office (grant
WO911NF-23-1-0129). TA acknowledges financial support from the Schweizerischer Nation-
alfonds zur Férderung der Wissenschaftlichen Forschung through NCCR Automation (grant
P2EZP2 191888).

References

Arrow, K. J., Harris, T., & Marschak, J. (1951). Optimal inventory policy. Econometrica,
19(3), 250-272. https://doi.org/10.2307/1906813

Asikis, T. (2023). Towards recommendations for value sensitive sustainable consumption.
NeurlPS 2023 Workshop on Tackling Climate Change with Machine Learning: Blending
New and Existing Knowledge Systems. https://nips.cc/virtual /2023 /76939

Asikis, T., Béttcher, L., & Antulov-Fantulin, N. (2022). Neural ordinary differential equation
control of dynamics on graphs. Physical Review Research, 4(1), 013221. https://doi.org/
10.1103/PhysRevResearch.4.013221

Barankin, E. (1961). A delivery-lag inventory model with an emergency provision. Naval
Research Logistics Quarterly, 8, 285-311. https://doi.org/10.1002/nav.3800080310

Béttcher, L. (2023). Gradient-free training of neural ODEs for system identification and control
using ensemble Kalman inversion. ICML Workshop on New Frontiers in Learning, Control,
and Dynamical Systems, Honolulu, HI, USA, 2023.

Bottcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). Al Pontryagin or how artificial
neural networks learn to control dynamical systems. Nature Communications, 13(1), 1-9.
https://doi.org/10.1038/s41467-021-27590-0

Bottcher, L., & Asikis, T. (2022). Near-optimal control of dynamical systems with neural
ordinary differential equations. Machine Learning: Science and Technology, 3(4), 045004,
https://doi.org/10.1088/2632-2153/ac92c3

Bottcher, L., Asikis, T., & Fragkos, I. (2023). Control of dual-sourcing inventory systems
using recurrent neural networks. INFORMS Journal on Computing, 35(6), 1308-1328.

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 4
https://doi.org/10.21105/joss.08508.


https://doi.org/10.2307/1906813
https://nips.cc/virtual/2023/76939
https://doi.org/10.1103/PhysRevResearch.4.013221
https://doi.org/10.1103/PhysRevResearch.4.013221
https://doi.org/10.1002/nav.3800080310
https://doi.org/10.1038/s41467-021-27590-0
https://doi.org/10.1088/2632-2153/ac92c3
https://doi.org/10.21105/joss.08508

The Journal of Open Source Software

https://doi.org/10.1287/ijoc.2022.0136

Bottcher, L., Fonseca, L. L., & Laubenbacher, R. C. (2025). Control of medical digital
twins with artificial neural networks. Philosophical Transactions A, 383(2292), 20240228.
https://doi.org/10.1098 /rsta.2024.0228

Chen, T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural ordinary
differential equations. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurlPS 2018,
December 3-8, 2018, Montréal, Canada (pp. 6572-6583). https://proceedings.neurips.cc/
paper/2018/hash/69386f6bb1dfed68692a24c8686939b9- Abstract.html

Dyer, J., Quera-Bofarull, A., Chopra, A., Farmer, J. D., Calinescu, A., & Wooldridge, M.
J. (2023). Gradient-assisted calibration for financial agent-based models. 4th ACM
International Conference on Al in Finance, ICAIF 2023, Brooklyn, NY, USA, November
27-29, 2023, 288-296. https://doi.org/10.1145/3604237.3626857

Fronk, C., & Petzold, L. (2023). Interpretable polynomial neural ordinary differential equations.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(4). https://doi.org/10.1063/
5.0130803

Fukuda, Y. (1964). Optimal policies for the inventory problem with negotiable leadtime.
Management Science, 10(4), 690-708. https://doi.org/10.1287 /mnsc.10.4.690

Mowlavi, S., & Nabi, S. (2023). Optimal control of PDEs using physics-informed neural
networks. Journal of Computational Physics, 473, 111731. https://doi.org/10.1016/j.jcp.
2022.111731

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. NIPS 2017 Autodiff
Workshop.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E. Z., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., .. Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning library. In H. M. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. B. Fox, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada (pp. 8024-8035). https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740- Abstract.html

Philippi, A., Buttler, S., & Stein, N. (2021). Ddop: A Python package for data-driven
operations management. Journal of Open Source Software, 6(66), 3429. https://doi.org/
10.21105/joss.03429

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-
Baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268), 1-8. http://jmlr.org/papers/v22/20-1364.html

Rusu, E., & Glatt, R. (2021). Abmarl: Connecting agent-based simulations with multi-
agent reinforcement learning. Journal of Open Source Software, 6(64), 3424. https:
//doi.org/10.21105/joss.03424

Scarf, H., & Karlin, S. (1958). Inventory models of the Arrow-Harris-Marschak type with time
lag. In K. J. Arrow, S. Karlin, & H. E. Scarf (Eds.), Studies in the mathematical theory of
inventory and production. Stanford University Press.

Song, J.-S., Van Houtum, G.-J., & Van Mieghem, J. A. (2020). Capacity and inventory
management: Review, trends, and projections. Manufacturing & Service Operations

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 5
https://doi.org/10.21105/joss.08508.


https://doi.org/10.1287/ijoc.2022.0136
https://doi.org/10.1098/rsta.2024.0228
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://doi.org/10.1145/3604237.3626857
https://doi.org/10.1063/5.0130803
https://doi.org/10.1063/5.0130803
https://doi.org/10.1287/mnsc.10.4.690
https://doi.org/10.1016/j.jcp.2022.111731
https://doi.org/10.1016/j.jcp.2022.111731
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.21105/joss.03429
https://doi.org/10.21105/joss.03429
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.21105/joss.03424
https://doi.org/10.21105/joss.03424
https://doi.org/10.21105/joss.08508

The Journal of Open Source Software

Management, 22(1), 36—46. https://doi.org/10.1287 /msom.2019.0798

Sun, J., & Van Mieghem, J. A. (2019). Robust dual sourcing inventory management: Optimality
of capped dual index policies and smoothing. Manufacturing & Service Operations
Management, 21(4), 912-931. https://doi.org/10.1287 /msom.2018.0731

Wang, Y.-J., & Lin, C.-T. (1998). Runge—Kutta neural network for identification of dynamical
systems in high accuracy. IEEE Transactions on Neural Networks, 9(2), 294-307. https:
//doi.org/10.1109/72.661124

Xin, L., & Van Mieghem, J. A. (2023). Dual-sourcing, dual-mode dynamic stochastic inventory
models. In Research Handbook on Inventory Management (pp. 165-190). Edward Elgar
Publishing. https://doi.org/10.4337/9781800377103.00015

Yang, Z., Lee, J., & Park, C. (2022). Injecting logical constraints into neural networks via
straight-through estimators. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G.
Niu, & S. Sabato (Eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA (Vol. 162, pp. 25096-25122). PMLR.
https://proceedings.mlr.press/v162/yang22h.html

Li et al. (2025). idinn: A Python Package for Inventory-Dynamics Control with Neural Networks. Journal of Open Source Software, 10(112), 8508. 6
https://doi.org/10.21105/joss.08508.


https://doi.org/10.1287/msom.2019.0798
https://doi.org/10.1287/msom.2018.0731
https://doi.org/10.1109/72.661124
https://doi.org/10.1109/72.661124
https://doi.org/10.4337/9781800377103.00015
https://proceedings.mlr.press/v162/yang22h.html
https://doi.org/10.21105/joss.08508

	Summary
	Statement of need
	Example usage
	Initialization
	Training
	Order calculation
	Additional control methods

	Acknowledgements
	References

