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Summary
Neural activity often exhibits sharp transitions between distinct states, captured by changepoint
models (Giahi Saravani et al., 2019; Jones et al., 2007; Seidemann et al., 1996). pytau is
a Python package for batched Bayesian changepoint inference across parameter grids and
datasets. It integrates with PyMC3 to provide uncertainty estimates that are critical for noisy
neuroscience data with small sample sizes and low channel counts, and includes tools for
preprocessing, model fitting, result visualization, and statistical analysis. The package has
been successfully applied in published research examining taste processing (Baas-Thomas et
al., 2025; Abuzar Mahmood et al., 2023; A. Mahmood et al., 2025; Maigler et al., 2024) and
taste aversion learning (Flores & Lin, 2023), and is currently being utilized in several ongoing
neuroscience studies (Calia-Bogan et al., 2025; Mazzio et al., 2025; Raymond et al., 2025).

While pytau is specialized for neural data analysis, the underlying Bayesian changepoint detec-
tion methods have broad applicability to any time series data where identifying state transitions
is important. The package includes examples demonstrating its use on classic changepoint
datasets from other domains, including historical event count data (coal mining disasters) and
continuous measurements (temperature data), illustrating how the same framework can be
applied to economic time series, environmental monitoring, quality control, and other sequential
data analysis problems.

Statement of need
Understanding how neural populations encode information often involves analyzing activity
changes over time across different experimental conditions, parameters, or subjects. Fitting
and comparing Bayesian changepoint models across numerous datasets or parameter settings
is computationally intensive and logistically challenging. Existing changepoint detection tools
lack the specialized functionality needed for neuroscience applications, particularly for handling
multi-trial, multi-neuron spike train data.

pytau addresses this gap by providing a modularized pipeline specifically designed for neuro-
science data. The package offers several key advantages:

1. Batch processing: Automates model fitting across multiple datasets and parameter
configurations

2. Database management: Organizes and tracks model fits for easy retrieval and comparison
3. Visualization tools: Provides specialized plotting functions including raster plots with

overlaid changepoints, state-dependent firing rate visualizations, and transition-aligned
activity plots

4. Statistical analysis: Includes tools for significance testing of state-dependent neural
activity, such as ANOVA-based detection of neurons with significant state-dependent
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firing and pairwise t-tests for transition-triggered activity

Its adoption in studies of taste processing (Abuzar Mahmood et al., 2023; A. Mahmood et
al., 2025; Maigler et al., 2024), taste aversion learning (Flores & Lin, 2023), and ingestive
behavior (Baas-Thomas et al., 2025) demonstrates its practical utility for researchers studying
state transitions in neural activity.

Figure 1: Spike rasters with changepoint overlays visualize inferred changepoints across trials and
neurons.

Implementation and architecture
pytau is implemented in Python and built on NumPy, SciPy, PyMC3, and Matplotlib (Harris
et al., 2020; Hunter, 2007; Salvatier et al., 2016; Virtanen et al., 2020). The package is
organized into several modules:

1. changepoint_model.py: Contains model definitions for various changepoint models
including Poisson and Gaussian models (see Available Models)

2. changepoint_io.py: Handles data loading, preprocessing, and result storage through
FitHandler and DatabaseHandler classes

3. changepoint_analysis.py: Provides tools for analyzing fitted models, including significance
testing and visualization

4. changepoint_preprocess.py: Contains functions for data preprocessing, binning, and
transformations (see Data Formats)
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The mathematical foundation is Bayesian changepoint detection. For a time series 𝑋 =
{𝑥1, 𝑥2, ..., 𝑥𝑇}, the package models 𝐾 states with transitions at 𝜏 = {𝜏1, 𝜏2, ..., 𝜏𝐾−1} and
Poisson emissions: 𝑥𝑡 ∼ Poisson(𝜆𝑘) for 𝜏𝑘−1 < 𝑡 ≤ 𝜏𝑘, where 𝜆𝑘 is the firing rate in state 𝑘.

The package employs Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et
al., 2017) for fast posterior approximation and Markov Chain Monte Carlo (MCMC) with the
No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014) for precise inference (see Inference
Methods). A key feature is modeling state transitions with sigmoid functions, which enables
continuous parameter exploration and detection of gradual changes in neural dynamics.

Example usage
pytau provides a streamlined workflow through the FitHandler class for model fitting and
PklHandler for analysis:

from pytau.changepoint_io import FitHandler

# Initialize fit handler

fh = FitHandler(data_dir='/path/to/data', taste_num=1,

region_name='GC', experiment_name='example')

# Set preprocessing and model parameters

fh.set_preprocess_params(time_lims=[0, 2000], bin_width=10)

fh.set_model_params(states=3, fit=5000, samples=1000)

# Run the full pipeline

fh.load_spike_trains()

fh.preprocess_data()

fh.create_model()

fh.run_inference()

fh.save_fit_output()

After fitting, results can be analyzed using the PklHandler class:

from pytau.changepoint_analysis import PklHandler

# Load fitted model

pkl_handler = PklHandler('/path/to/saved/model.pkl')

# Access model components

tau = pkl_handler.tau # Changepoint times

firing = pkl_handler.firing # Firing rate analysis

# Analyze significant neurons

significant_neurons = firing.anova_significant_neurons

The package includes visualization tools for examining neural activity with overlaid changepoints,
analyzing state-dependent firing rates, and visualizing transition-aligned activity. Comprehensive
tutorials and detailed examples are available in the documentation, including Jupyter notebooks
and example scripts with test datasets in the repository’s how_to directory.
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Figure 2: State timing overview shows state durations and transition time distributions across trials.

State of the field
As discussed above, several tools exist for changepoint detection, including ruptures (Truong
et al., 2018) for offline change point detection, bayesloop (Mark et al., 2018) for probabilistic
time series analysis, PyChange (Gumbsch, 2017) for general time series changepoint detection,
and Bayesian online changepoint detection methods (Adams & MacKay, 2007; Fearnhead & Liu,
2007). While these general-purpose tools are valuable, pytau differs by focusing specifically
on neuroscience applications. It provides specialized functionality for handling multi-trial,
multi-neuron spike train data, batch processing across parameter grids, database management
for model comparison, and neuroscience-specific visualization and statistical analysis tools.
This specialization makes pytau particularly suited for researchers analyzing state transitions
in neural population activity across different experimental paradigms.
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