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Summary

Elliptic partial differential equations (PDEs) can model many physical phenomena, such as
electrostatics, acoustics, wave propagation, and diffusion. In scientific machine learning settings,
a high-throughput PDE solver may be required to generate a training dataset, run in the inner
loop of an iterative algorithm, or interface directly with a deep neural network. To provide value
to machine learning users, such a PDE solver must be compatible with standard automatic
differentiation frameworks, scale efficiently when run on graphics processing units (GPUs), and
maintain high accuracy for a large range of input parameters. We have designed the jaxhps
package with these use-cases in mind by implementing a highly efficient and accurate solver for
elliptic problems with native hardware acceleration and automatic differentiation support. This
is achieved by expressing a highly-efficient solution method for elliptic PDEs in JAX (Bradbury
et al., 2018). This software implements algorithms specifically designed for fast GPU execution
of a family of elliptic PDE solvers, which are described in full in Melia et al. (2025).

Our Python package can numerically compute solutions u(x) to problems of the form:
Lu(z) = f(z), (1)
u(z) = g(z), (2)

In our setting, £ is a linear, elliptic, second-order partial differential operator with spatially
varying coefficient functions. The spatial domain, £2, can be a 2D square or 3D cube.

x € Q,
x € 0f).

Statement of need

While there is a vast array of PDE solvers implemented in JAX, we make a distinct contribution
by implementing methods from the hierarchical Poincaré-Steklov (HPS) family of algorithms
(Gillman et al., 2015; Gillman & Martinsson, 2014; Martinsson, 2013). These methods use
modern numerical analysis tools to resolve physical phenomena that are challenging for simpler
tools, such as finite difference or finite element methods. One example of such a physical
phenomenon is the oscillatory behavior of time-harmonic wave propagation simulations, which
HPS methods resolve accurately and finite element methods do not (Babuska & Sauter, 1997;
Yesypenko & Martinsson, 2024).

While open-source implementations of HPS methods exist for users of MATLAB (Fortunato,
2024) and C++ (Chipman, 2024), these packages do not offer native hardware acceleration
or automatic differentiation capabilities. In addition, these packages do not offer support for
three-dimensional problems. Yesypenko (2024) is a Python implementation of the hardware-
accelerated HPS-like method described in Yesypenko & Martinsson (2024), but it is designed
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for performance on extremely large 2D systems, which requires different design choices than
the machine learning-focused optimizations we include in jaxhps.

Software overview

The software is designed with two goals:

= Allow users to interact with a simple interface that abstracts the complex HPS algorithms
= Organize the flow of data to allow the user to reuse computations where possible

A typical user of jaxhps will wish to compute a solution u(x) to equations (1) and (2). The
user will first specify €2 by creating DiscretizationNode and Domain objects. These objects
automatically compute a high-order composite spectral discretization of 2. The Domain class
exposes utilities for interpolating between the composite spectral discretization and a regular
discretization specified by the user. If f or £ have local regions of high curvature, the Domain
object’s discretization can also be computed in an adaptive way that assigns more discretization
points to those parts of 2. Additional utilities for interacting with the composite spectral
discretization can be found in the quadrature module.

After the Domatin is initialized, a PDEProblem object is created by the user from data specifying
£ and (optionally) f. The PDEProblem object also stores pre-computed interpolation and
differentiation operators that can be reused during repeated calls to the solver.

The user can then execute the HPS algorithm by calling the build_solver() method, specifying
f and g, and finally calling the solve() method. During the build_solver() and solve()
methods, pointers to various solution operators are stored in the PDEProblem object. If the
problem size is large, and these solution operators can not all be stored simultaneously on a
GPU, care must be taken to organize the computation and data transfer between the GPU and
CPU memory. To facilitate this, we provide solve_subtree( ), upward_pass_subtree(), and
downward_pass_subtree( ), newly developed algorithms designed to minimize data transfer
costs. A full description of these algorithms can be found in Melia et al. (2025). After
computing the solution, the user can use automatic differentiation to compute the gradient of
the solution with respect to input parameters by calling jax.jvp() or jax.vjp(). Multiple
examples showing these capabilities are included in the source repository and the documentation.

Finally, some researchers may want to design new algorithms by operating on the outputs
of various subroutines underlying these HPS methods. To facilitate this, we expose a large
collection of these subroutines in the local_solve, merge, up_pass, and down_pass modules.
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