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Summary
JaxLayerLumos is an open-source Python package for simulating electromagnetic wave interac-
tions with multilayer structures using the transfer-matrix method (TMM). It is designed for
researchers and engineers working with applications in optics, photonics, and related fields.
The software efficiently computes reflection, transmission, and absorption across a broad
spectral range, including ultraviolet, visible, infrared, microwave, and radio frequencies (RF),
with support for magnetic effects in the microwave and radio regimes. A key feature of
JaxLayerLumos is its implementation in JAX, which enables automatic differentiation with
respect to any input parameter, e.g., layer thicknesses and refractive indices, and supports
seamless execution on graphics processing units (GPUs) and tensor processing units (TPUs).
This differentiability is valuable for gradient-based optimization and for integrating simulations
into machine learning pipelines, accelerating the discovery of novel devices and materials.

Statement of need
Multilayer structures are essential in a wide range of technologies, including structural color
coatings (ElKabbash et al., 2023; Sun et al., 2013), next-generation solar cells (Bati et al.,
2023; Gao et al., 2014, 2016; Wang & Leu, 2015), radar-absorbing materials (Michielssen
et al., 1993; Vinoy & Jha, 1996), and electromagnetic interference (EMI) shielding (Kim et
al., 2023, 2024; Li et al., 2022; Zhao et al., 2024), as presented in Figure 1. They are also
key components in optical filters, antireflection coatings (Haghanifar et al., 2020), and other
photonic devices.

Figure 1: Applications of JaxLayerLumos
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TMM (Born & Wolf, 1999) is a foundational analytical technique for modeling wave interactions
in these systems. Table 1 compares several TMM implementations, including Ansys Optics,
TMM-Fast, tmm, and our package. Most TMM tools, such as (Byrnes, 2012) and (Luce et al.,
2022), use the complex refractive index formulation and lack support for magnetic materials or
frequencies relevant to RF and microwave applications. There is a growing need for simulation
tools that

• Operate efficiently across a broader spectral range including optical, RF, and microwave
frequencies,

• Handle magnetic and lossy materials with complex permittivities and complex permeabil-
ities,

• Support modern workflows that integrate machine learning and large-scale optimization.

Table 1: Comparison of other TMM packages with JaxLayerLumos

Feature
Ansys Optics
(stackrt)

TMM-Fast (Py-
Torch/NumPy)

tmm (Pure
Python)

JaxLayerLumos
(JAX)

Lightweight × Bulky ✓ ✓ ✓
Speed on CPUs × Slow ✓ Fast × Slow ∼ Moderate
Gradient
Support

× ✓ × ✓

GPU Support × ✓ × ✓
TPU Support1 × × × ✓
Position-
Dependent
Absorption

× × ✓ ✓

Optical
Simulations

✓ ✓ ✓ ✓

Infrared
Simulations

∼ Limited ∼ Limited × ✓

Radio Wave
Simulations

∼ Limited × × ✓ Handles
magnetic
materials

Open Source × Commercial ✓ MIT ✓
BSD-3-Clause

✓ MIT

JaxLayerLumos addresses this need by offering a JAX-based TMM framework. Its core
advantages include:

• Differentiability: Automatically computes gradients with respect to any simulation
parameters (e.g., layer thicknesses and refractive indices).

• Seamless Execution: Utilizes JAX’s just-in-time compilation and hardware acceleration
with CPUs, GPUs, or TPUs for efficient computation.

• Broad Spectral and Material Support: Accommodates complex permittivities and
permeabilities (necessary for magnetic and RF materials), customizable layer structures,
oblique incidence, and both TE and TM polarizations.

• Ecosystem Integration: Easily integrates with Python’s scientific computing stack,
including optimization libraries and machine learning frameworks such as JAX (Bradbury
et al., 2018) and Scikit-learn (Pedregosa et al., 2011).

These capabilities make JaxLayerLumos particularly valuable for researchers working at the
intersection of computational electromagnetics and machine learning. As an open-source,

1Because TPUs are optimized for low-precision computation, their simulation results may show reduced
numerical precision.
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lightweight alternative to commercial tools, it offers speed, flexibility, and ease of use for
advanced research.

Methodology

Figure 2: Schematic of TMM showing a multilayer structure with incident, reflected, and transmitted
waves. Each layer is characterized by its thickness 𝑑𝑗, permittivity 𝜀𝑟,𝑗, and permeability 𝜇𝑟,𝑗.

The core of JaxLayerLumos implements TMM, which calculates the propagation of electromag-
netic waves through a stack of 𝐿 planar layers (Born & Wolf, 1999). It calculates key optical
properties, such as reflection 𝑅(𝑓), transmission 𝑇 (𝑓), and absorption 𝐴(𝑓), as functions of
frequency 𝑓 or wavelength 𝜆. The software also supports position-resolved absorption and
per-layer absorption calculations. Each layer 𝑗 is defined by thickness 𝑑𝑗, complex relative
permittivity 𝜀𝑟,𝑗, and complex relative permeability 𝜇𝑟,𝑗.

For a given frequency 𝑓 and incidence angle 𝜃0, the propagation of light is described by interface
matrices D𝑗 that capture Fresnel coefficients at the boundary between layer 𝑗 and its following
layer, and propagation matrices P𝑗 representing full wave propagation within each layer and
captures both phase shift and attenuation due to absorption in lossy media. The total transfer
matrix M for the entire stack is the product of these individual matrices:

M = (P0D0)(P1D1)⋯ (P𝐿D𝐿)P𝐿+1

JaxLayerLumos includes a growing library of materials, which are specified using either complex
refractive indices or complex permittivities and permeabilities, which can be sourced from the
literature or specified by users based on experimental data. When only complex refractive
indices are provided, magnetic effects are assumed to be negligible, and the relative permeability
is set to unity (𝜇𝑟,𝑗 = 1), an assumption typically valid at optical frequencies. In the RF and
microwave regimes, the electromagnetic properties of metals are derived from their electrical
conductivity and magnetic susceptibility, while dielectrics are generally modeled with constant
permittivity and negligible loss.
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Potential applications
These illustrative examples, including our own reproduced implementations, outline how
JaxLayerLumos can be applied across diverse fields, showcasing its versatility and broad
potential:

• Radar-absorbing materials and frequency-selective surfaces: Simulate spectral responses
in the microwave and RF ranges (Michielssen et al., 1993), with full support for magnetic
materials.

• Thin-film structural optimization: Use Bayesian optimization (Garnett, 2023) or gradient-
based methods (Boyd & Vandenberghe, 2004) to tailor spectral responses across both
optical and RF domains.

• Solar cell design: Model and analyze single- and multi-junction solar cell architectures
(Gao et al., 2014, 2016; Wang & Leu, 2015).

• Structural color: Explore engineered structural coloration for novel material design
(ElKabbash et al., 2023; Sun et al., 2013).

• Inverse design with machine learning: Train Transformer-based models (Vaswani et al.,
2017) to design optical coatings and RF devices.

Jupyter notebook examples are available in the examples directory. Note that some of these
examples are reproduced implementations used to validate the functionality of our software.
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