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Summary

Gyselalib++ provides the mathematical building blocks to construct kinetic or gyrokinetic
plasma simulation codes in C4++, simulating a distribution function discretised in phase space
on a fixed grid. It relies on the Discrete Domain Computation (DDC) library (Padioleau et
al., 2025) to statically type the discretisation dimensions, thus preventing many common
sources of errors. Via DDC, Gyselalib++ also leverages the Kokkos framework (Trott et al.,
2022), ensuring performance portability across various CPU and GPU architectures. The library
provides a variety of tools including semi-Lagrangian advection operators, quadrature rules,
and solvers for elliptic and hyperbolic partial differential equations (PDEs). The majority of
the operators are designed to work on non-orthonormal coordinate systems; those that don't
use the static typing to raise compiler errors preventing their misuse.

Gyrokinetic Simulations

Plasma simulations are essential for the development of magnetic confinement fusion devices
for energy production. The low collisionality of such plasmas makes kinetic models a judicious
choice. In particular, gyrokinetic theory (Brizard & Hahm, 2007; Krommes, 2012), which
reduces the 6D problem to a 5D problem by removing high-frequency gyromotion, is a popular
framework for plasma simulation (Garbet et al., 2010). Despite the reduction in dimensionality,
such simulations still require massively powerful high-performance computing (HPC) resources.
For ITER!-sized simulations, exascale resources would still be required.

The pre-existing GYSELA code (Grandgirard et al., 2016), written in Fortran, originally aimed
to simulate plasma in the core region of a tokamak using semi-Lagrangian advection with a
distribution function discretised in phase space on a uniform grid. This approach was shown to
work well, and it allowed the study of many interesting physical phenomena (Dif-Pradalier et
al., 2022; Estéve et al., 2018; Sarazin et al., 2021). However, expanding this code to use more
complex mathematical methods such as non-uniform points (vital for handling the different
magnitudes of physical quantities in the core and edge regions), and increasingly complex
geometries (such as D-shape geometries, geometries including both open and closed field lines,
X-points, and potentially stellarator geometries) has proved to be challenging and sometimes
error-prone. These complexities are further amplified when trying to port such a code to GPU
architectures, which are necessary for exascale simulations. This is a challenge shared by other
gyrokinetic codes (Trilaksono et al., 2025).
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Statement of Need

In the case of GYSELA, the changes necessary to add non-uniform points and simplify
the implementation of other new features, would have required an effort comparable to a
complete rewrite, whereas actually performing such a rewrite brings additional benefits for
design and portability. For example, we have been able to capitalise on C++'s strengths
by using template programming to enforce the correctness of the implemented equations. A
common source of error is writing equations with implicit assumptions, such as assuming an
orthonormal coordinate system, or specific properties like those of a circular coordinate system.
In Gyselalib++4, equations are either expressed in tensor notation, so that they are either
accurate for all geometries or do not compile, or they explicitly state their dependencies. C++
further enables us to add static assertions for cases with restricted applicability to prevent their
misuse. Additionally, DDC is used to encode grid information directly in the type of each field,
allowing the compiler to catch indexing errors at compile time. This is particularly useful when
working with multiple grids along the same dimension, or when assigning different memory
layouts to different fields.

In contrast to GYSELA, Gyselalib++ was conceived of and developed as a library, similar to
the SeLaLib Fortran library (The SelLaLib project team, 2023), whose independent elements
are each unit-tested and can be combined to build a final simulation. This design makes the
library more versatile, enabling users to rapidly assemble a wide range of simulations, including
high-dimensional test cases. The shared elements also provide more confidence in the reliability
of the implementation, as they can prove their validity across multiple applications.

State of the Field

Most established gyrokinetic simulations, such as GENE-X (Michels et al., 2021) and GT5D
(Idomura et al., 2009), are written in Fortran as stand-alone codes. This limits code sharing
and reuse between projects. In contrast, many particle-in-cell codes, such as WarpX (Vay et
al., 2018) and XGC (Ku et al., 2018), are now developed around reusable libraries like AMReX
(Zhang et al., 2019) and Cabana (Slattery et al., 2022). To our knowledge, Gyselalib++ is the
first such C++ library capable of Eulerian or semi-Lagrangian gyrokinetic applications. The
Fortran library SeLaLib (The SelaLib project team, 2023) plays a similar role in Fortran.

Contents

Gyselalib++ includes a range of reusable mathematical operators for plasma simulations. These
include, but are not limited to, semi-Lagrangian advection schemes, numerical quadrature,
differential operators (e.g. finite difference methods), solvers for common PDEs, and a multi-
species collision operator (Donnel et al., 2019). A complete list of operators is available in the
documentation®. Many of these tools are designed to work on a variety of grids, including
non-uniform grids, which are especially important in edge-region simulations. The library
also supports MPI-based parallelism, either with distributed operators or with transpositions
between different multi-rank storage layouts.

The VOICE code (Bourne et al., 2023) has already been rewritten in C++ using the mathemat-
ical tools provided by Gyselalib++-. Several common simulations including Landau damping
(in 2D or in 4D MPI-parallelised Cartesian phase-space coordinates), a bump-on-tail instability
(in 2D Cartesian phase-space coordinates), and a guiding-centre model (in polar coordinates)
have also been implemented. While these examples are included primarily for illustration, they
also serve as valuable testbeds for developing and validating new numerical methods. As
such, these examples are ideal for mathematicians looking to validate new methods in realistic,
publication-ready test cases.
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