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Summary

Generating samples from a probability distribution is a common requirement in many disciplines.
In Bayesian inference, for example, the distribution of interest is the posterior over parameters
of a model, given data assumed to be generated from the model. Expectations with respect
to the posterior can be estimated using samples, allowing computation of posterior means,
variances and other quantities of interest. Markov chain Monte Carlo (MCMC) methods are a
general class of algorithms for approximately sampling from probability distributions.

rmcme is an R package providing implementations of MCMC methods for sampling from
distributions on R for d > 1. It provides a general purpose implementation of the Barker
proposal (Livingstone & Zanella, 2022), a gradient-based MCMC algorithm inspired by the
Barker accept-reject rule (Barker, 1965). rmcmc also provides implementations of other MCMC
algorithms based on random walk, Langevin and Hamiltonian dynamics. It has a flexible
interface for performing adaptive MCMC so that algorithmic tuning parameters can be learned
in a bespoke manner (Andrieu & Thoms, 2008; Haario et al., 2001). The key function provided
by the package is sample_chain, which samples a Markov chain with a user-specified stationary
distribution. The chain is sampled by generating proposals and accepting or rejecting them
using the Metropolis—Hastings (Hastings, 1970; Metropolis et al., 1953) algorithm. During an
initial warm-up stage, the parameters of the proposal distribution can be adapted. Schemes
are available to both tune:

= the scale of the proposals by coercing the average acceptance rate to a target value,
= the shape of the proposals to match covariance estimates under the target distribution.

Statement of need

For target distributions with smooth density functions, gradient-based MCMC methods can
provide improved sampling efficiency over simpler schemes such as random-walk Metropolis
(RWM) in high-dimensional settings (Beskos et al., 2013; Roberts & Rosenthal, 1998; Roberts
& Tweedie, 1996). For methods such as Metropolis adjusted Langevin algorithm (MALA)
(Besag, 1994; Rossky et al., 1978) and Hamiltonian Monte Carlo (HMC) (Duane et al., 1987;
Neal, 2011), this improved efficiency comes with a cost. Specifically these methods exhibit
decreased robustness to tuning of the algorithm’'s parameters, compared to non-gradient based
methods such as RWM (Livingstone & Zanella, 2022).

The Barker proposal provides a middle road. It offers similar efficiency in high-dimensional
settings as other gradient-based methods such as MALA (Vogrinc et al., 2023), while allowing
easier adaptive tuning of the algorithm’'s parameters. It also provides improved robustness to
certain forms of irregularity, such as skewness, in the target distribution (Hird et al., 2020).

rmcme fills a niche in the R statistical computing ecosystem, providing general purpose im-
plementations of the Barker proposal, as well as RWM, MALA, and HMC. The package
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also supports several schemes for adapting the proposal parameters. Significant flexibility is
available in specifying the log density of the target distribution, and its gradient. Users can:

= directly define functions to compute the log density and its gradient;

= specify a formula for the log density which will then be symbolically differentiated using
the deriv function in the base R stats package (R Core Team, 2024);

= or define a model using Stan's modelling syntax via the R interface of BridgeStan
(Carpenter et al., 2017; Roualdes et al., 2023).

The package has a modular design, allowing users to easily try out different algorithmic
components and options, and to extend the package with new algorithms. This is exemplified
in the Barker proposal implementation, which supports customizing the distribution over the
auxiliary variables used in generating the proposal. As discussed in Vogrinc et al. (2023) and
illustrated in a package vignette, this can significantly improve sampling efficiency in some
cases.

rmcmc has a pure R codebase with minimal required dependencies, making it a lightweight
addition to other projects. The package also interfaces with several others in addition to
BridgeStan. For instance, a wrapper around the robust adaptive Metropolis (RAM) (Vihola,
2012) adaptation scheme in the ramcmc package is provided (Helske, 2021). The sampled
chain traces can also be directly passed to functions for computing summary statistics and
convergence diagnostics in the posterior or coda packages (Biirkner et al., 2024; Plummer
et al., 2006).

Related software

Several other R packages provide implementations of MCMC methods. mcmc (Geyer & Johnson,
2023) provides a general purpose implementation of RWM, along with a ‘morphometric’ variant
(Johnson & Geyer, 2012), which reparametrizes the target distribution to improve efficiency.
MCMCpack (Martin et al., 2011) focuses on providing customized MCMC methods for specific
classes of statistical model that exploit the structure of the model, though it does also provide
a general purpose RWM implementation. fmcmc (Yon & Marjoram, 2019) is similar in design to
rmcmc. It provides a modular framework with a variety of pre-defined proposals such as Gaussian
and uniform RWM, and adaptive methods such as RAM and adaptive Metropolis (Haario et
al., 2001). None of memc, MCMCpack or fmcmc provide gradient-based MCMC methods, which
can significantly improve sampling efficiency, as discussed above.

The GitHub repository gzanella/barker (Zanella, 2019) contains code to recreate the nu-
merical experiments in Livingstone & Zanella (2022), and provides a basic implementation
of the Barker proposal. The R scripts in the repository are not, however, structured into a
package, complicating reuse in other projects. The implementation also only provides support
for sampling from the proposal and evaluating its log density ratio.

Stan and NIMBLE (de Valpine et al., 2017), with associated R interfaces rstan (Stan
Development Team, 2024) and nimble (de Valpine et al., 2024), are probabilistic programming
languages (PPLs), domain specific languages for the specification of probabilistic models. Both
Stan and NIMBLE also provide implementations of a variety algorithms to perform inference
in models defined via their PPLs, and in particular both offer gradient-based MCMC methods.

Stan's default MCMC implementation is a HMC method, which dynamically sets the trajectory
lengths when simulating Hamiltonian dynamics to generate proposals (Betancourt, 2017;
Hoffman & Gelman, 2014). Stan also includes schemes for adapting an algorithm’s scale
(step-size) and shape (metric) parameters, but with limited user-flexibility. Stan also does not
currently provide an implementation of the Barker proposal. rmcmc does also offer a basic HMC
implementation, but currently only supports HMC with static or randomized trajectory lengths.
One of the proposal scale adaptation schemes implemented in rmcmc, is a dual-averaging
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algorithm (Hoffman & Gelman, 2014; Nesterov, 2009). This matches the corresponding scheme
in Stan, but in contrast to Stan alternative schemes are available in rmcmc.

NIMBLE supports defining both models and statistical algorithms in its PPL. It provides
implementations of a variety of MCMC methods including, RWM, HMC (Turek et al., 2024),
and the Barker proposal. Compared to rmcmc, NIMBLE's Barker proposal implementation
is tightly integrated into the broader NIMBLE framework. This means it can only easily be
applied to models specified in NIMBLE. NIMBLE's Barker proposal implementation provides
support for adapting the proposal scale and shape parameters. However, unlike rmcmc, the
adaptation scheme provided is fixed, without an ability to swap in alternative adaptation
schemes.
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