The Journal of Open Source Software

DOI: 10.21105/joss.08618

Software
= Review &7
= Repository @
= Archive &0

Editor: Neea Rusch @@
Reviewers:

= @mithun218

= @KumarSaurabh1992

Submitted: 24 February 2025
Published: 19 November 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

pylevin: efficient numerical integration of integrals
containing up to three Bessel functions

Robert Reischke ® 1Y

1 Argelander Institut fuer Astronomie, Germany 9§ Corresponding author

Summary

Bessel functions naturally occur in physical systems with some degree of rotational symmetry.
Theoretical predictions of observables, therefore, often involve integrals over those functions
that are not solvable analytically and have to be treated numerically instead. However, standard
integration techniques such as quadrature generally fail to solve these integrals efficiently and
reliably due to the rapid oscillations of the Bessel functions. Providing general tools to compute
these types of integrals quickly is therefore paramount. pylevin can calculate the following
types of frequently encountered integrals

N

b
Iy 0, (kv Koy k3) :/ dl‘f(m)ngi(kﬂ), N=1,2,3,

=1

where J,(z) denotes a spherical or cylindrical Bessel function of order £ and f(x) can be
any non-oscillatory function, i.e., with frequencies much lower than the one of the product of
Bessel functions.

Statement of need

Typical approaches for numerically estimating integrals over highly oscillatory integrands are
based on Fast Fourier Transforms (FFTLog) (Fang et al., 2020; Grasshorn Gebhardt & Jeong,
2018; Schoéneberg et al., 2018) and asymptotic expansions (Iserles & Ngrsett, 2005; Levin,
1996). In pylevin, we implement one of the former methods, specifically, the adaptive Levin
collocation (Chen et al., 2022; Leonard et al., 2023; Levin, 1996). Extending and improving the
work done in Zieser & Merkel (2016), pylevin can solve integrals of the type I, , ,. (K1, ko, ks3)
(see summary).

The main code is implemented in C++ and wrapped into python using pybind. Due to the way
pylevin implements Levin's method, it makes extensive use of precomputed quantities, allowing
the function f(x) to be updated and making successive calls to the integration routine an
order of magnitude faster than the first. An aspect that is particularly important for situations
where the same type of integral needs to be evaluated many times for slightly different f(z).
This is, for example, the case in inference when running Markov Chain Monte-Carlo.

In contrast to other implementations of highly oscillatory integrals, pylevin is very flexible:
it is not hardcoded or tailored to a particular application, and it is entirely agnostic to the
integrand. Furthermore, it implements integrals over three Bessel functions for the first time.
These are, for example, required in many cosmological applications for higher-order statistics.
Due to its implementation in a statically typed compiled language, it is also swift, while making
use of the convenience and widespread use of python via pybind.

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 1
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://orcid.org/0000-0001-5404-8753
https://doi.org/10.21105/joss.08618
https://github.com/openjournals/joss-reviews/issues/8618
https://github.com/rreischke/levin_bessel
https://doi.org/10.5281/zenodo.17544097
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/mithun218
https://github.com/KumarSaurabh1992
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08618

The Journal of Open Source Software

Examples

The way pylevin works is that one first defines an integrand, f(x), the integral type (spherical
or cylindrical Bessel functions and N), and whether the interpolation of the integrand should
be carried out logarithmically.

X = np.geomspace(le-5,100,100)

f_of_x = x**3 + (x**2 + X)

integral_type = 0

number_omp_threads = 1

interploate_logx = True

interploate_logy = True

lp_single = levin.pylevin(integral_type,
X,
f_of_x[:, Nonel,
logx,
logy,
number_omp_threads)

Note that the broadcasting of f_of_x is required, as one can, in principle, pass many different
integrands at the same time, and the code always expects this dimension. We can then define
the values k and ¢ at which we want to evaluate the integral, which are all one-dimensional
arrays of the same shape. Additionally, we also have to allocate the memory for the result,
which is stored in-place:

k = np.geomspace(le-3,1e4,1000)
ell = (5*np.ones_like(k)).astype(int)
result_levin = np.zeros((len(k), 1))
lp_single.levin_integrate_bessel_single(x[0]*np.ones_like(k),
x[-1]*np.ones_like(k),
k)
ell,
False,
result_levin)

If we had passed more integrands before, the results must have the corresponding shape in the
second dimension. For more detailed examples, we refer to the example notebook on GitHub
and to the API.

We now demonstrate the performance of pylevin on a single core on an Apple M3 and compare
it to scipy.integrate.quad, an adaptive quadrature. The relative accuracy required for both
methods is set to 1072, We use the following two integrals as an example:

100
L= [do (@4 a? +ahiolka)is(ke)
10-5

100
I; = / dz (z° + 22 +)y (kx)js (kx)j15 (k)
10-5

The result of I, is shown on the left and for I; on the right in Figure 1. In order for the
quadrature to converge over an extended k-range, the number of maximum sub-intervals was
increased to 103 (2 x 103) for I, (I3). The grey-shaded area indicates where the quadrature
fails to reach convergence even after this change. It is therefore clear that pylevin is more
accurate and around three to four orders of magnitude faster than standard integration routines.

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 2
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://doi.org/10.21105/joss.08618

The Journal of Open Source Software

2 1 154 T
000 > adaptive quadrature ___ pylevin
took 150 took 0.15 s
=~ == 104
X X
a1 0 ’_/\ el 54
~ . a e 9
adaptive quadrature . pylevin
took 458 took 1 x 10725 04
o 0.0010 o 0.0010
o 3]
5 =
S 000051 & 00005
& =
= 0.0000 1 =< 0.0000 by
o o
-~ -
= —0.0005 = —0.0005
< <
g 0.0010 E 0.0010
T 02 107! 10° 10! 10% R T 107! 10° 10t 10? 10%
k k

Figure 1: Speed and accuracy comparison of pylevin (shown in dashed red) against a standard adaptive
quadrature (shown in solid blue). The runtime for the two methods is given in the legend. For adaptive
quadrature, the maximum number of subintervals was set to 1000 (the default is 50). The grey shaded
region indicates when the quadrature starts to fail. The bottom panel shows the relative difference
between the two methods. Left: Result of the integral I,. Right: Result of the integral I,.

Comparison with various codes

In addition to the benchmark, pylevin is compared with more specialised codes that mostly
solve integrals over single Bessel functions. All computing times presented here are averages
over several runs. The comparison was conducted on an M3 processor with 8 cores (4
performance cores).

hankel

We compute the following Hankel transformation using pylevin and Ogata’s method (Ogata
(2005)), as implemented in the hankel package (Murray & Poulin (2019)).

2172

integral(k) = / — Jy(kz) dz
o T2+1

for 500 values of k logarithmically-spaced between 1 and 10%. The result is depicted on the
left side of Figure 2. It can be seen that both methods agree very well and are roughly equally
fast. While the Hankel transformation formally extends from 0 to infinity, $ a = 107{-5}$ and
b = 10® were used for pylevin. This choice of course depends on the specific integrand.

hankl

Here, we follow the cosmology example provided in the hankl documentation (Karamanis &
Beutler (2021)) to compute the monopole of the galaxy power spectrum:

o(6) = [(82 + 703+ £2/5) P (k)R
0

where b is the galaxy bias, f the logarithmic growth rate, and P, (k) is the linear matter
power spectrum, which is calculated using camb (Lewis & Bridle (2002)) at six redshifts. Since
hankl is FFT-based, it requires k to be discretised; the FFT-dual will then be calculated at
the inverse grid points. For this comparison, we use 210 logarithmically-spaced points between
k= 10"* and k = 1 for the transformation to converge. For pylevin, the number of points
where the transformation is evaluated is arbitrary. Here we use 100 points, which is more than

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 3
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://doi.org/10.21105/joss.08618

The Journal of Open Source Software

enough to resolve all features in £,. The results are shown on the right of Figure 2, and good
agreement is observed between the two methods, with hankl roughly twice as fast as pylevin.

500

Hankl (FFTLog) ___ pylevin
took 0.0015s took 0.003 s

0.10 4 400 4

0051 3007

200
0.00 4

k X integral
s*€o

100 1

—0.051

Hankel (Ogata) ___ pylevin
took 0.002s took 0.003 s

100 10 102 10° 10* 50 100 150 200 250 300
k s[Mpc]

Figure 2: Comparison of pylevin with two methods to calculate a Hankel transformation. Dashed red is
pylevin while solid blue is the alternative method. Left: Integral(k) evaluated with the Ogata method
using the hankel package. Right: Integral for the galaxy power spectrum monopole evaluated using the
hankl package. Different lines refer to different redshifts.

pyfftlog

For pyfftlog (Hamilton (2000)), we use the following transformation:
FT(k) = / rPe /2 J, (kr) dr .
0

For pyfftlog, 28 logarithmically-spaced points between 10~ and 10* for 7 and hence also for
k. pylevin is evaluated for the same number of points; this value could, however, be reduced
due to the featureless transformation, thus increasing the speed. In the left panel of Figure 3,
the result of this exercise is shown. Good agreement between the two methods is found, with
both taking the same amount of time. The large relative error at large values of k is due to
the small value of the integral, and hence purely numerical noise.

pyCCL

Here, we compare the implementation of the non-Limber projection for the angular power
spectrum:

2 . .
C, = ;/dle(xl)/dXQW(XQ)/kzdk Pk, X1, X2)J0(kx1)de(kXxa)

for W, we assume a Gaussian shell in redshift with width o, = 0.01 centred at z = 0.6, x(z)
is the comoving distance. The matter power spectrum, P,_, is again calculated with camb.
The results from pylevin are compared to CCL (Chisari et al. (2019)), which implements an
FFTLog algorithm (Fang et al., 2020; Leonard et al., 2023). This implementation first solves
the two integrals over x; 5 using FFTLog and then carries out the remaining integral over
k and assumes that the k and x, , dependence in the matter power spectrum is separable.
To be consistent, we follow the same approach: we first integrate the x; , using pylevin,
then calculate the remaining k integration using the composite Simpson'’s rule implemented in
scipy. The right side of Figure 3 shows that the two methods agree very well with each other
and that the method implemented in CCL is about a factor of 2 faster. If the power spectrum,
however, were not separable on small k, as it can be the case in modified gravity scenarios,
the CCL method would need to split the integral up into sub-intervals where the separability

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 4
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://doi.org/10.21105/joss.08618

The Journal of Open Source Software

holds, slowing down the computation by a factor equal to the number of sub-intervals. This
assumption is not done in pylevin.

44 pyfft
took 0.001 s
___ bpylevin .
E) took 0.001s | O
- 107
CCL (FFTLog) ___ pylevin)
0 took 0.017 s took 0.03 s Limber CCL
]013,
8 g 1074
2 0 g
T 10° T
[} o
= Z
E o, =
2 1072 =
= E 10
102 107! 10° 10! 102 10° 10" 10?
13 /

Figure 3: Comparison of pylevin with two other methods, the colour scheme is the same as in Figure 2.
Left: Transformation defined in FT(k) with the pyfftlog package. Right: angular power spectra, C(¢)
computed with pyCCL. We show the relative difference between the two methods in the lower panel.

Acknowledgements

| would like to thank Andrina Nicola and Paul Rogozenski for their help fixing issues with the
CCL non-Limber comparison.

References

Chen, S., Serkh, K., & Bremer, J. (2022). On the adaptive Levin method. arXiv e-Prints,
arXiv:2211.13400. https://doi.org/10.48550/arXiv.2211.13400

Chisari, N. E., Alonso, D., Krause, E., Leonard, C. D., Bull, P., Neveu, J., Villarreal, A. S.,
Singh, S., McClintock, T., Ellison, J., Du, Z., Zuntz, J., Mead, A., Joudaki, S., Lorenz,
C. S., Troster, T., Sanchez, J., Lanusse, F., Ishak, M., .. LSST Dark Energy Science
Collaboration. (2019). Core cosmology library: Precision cosmological predictions for
LSST. The Astrophysical Journal Supplement Series, 242, 2. https://doi.org/10.3847/
1538-4365/ab1658

Fang, X., Eifler, T., & Krause, E. (2020). 2D-FFTLog: efficient computation of real-space
covariance matrices for galaxy clustering and weak lensing. MNRAS, 497(3), 2699-2714.
https://doi.org/10.1093/mnras/staal726

Grasshorn Gebhardt, H. S., & Jeong, D. (2018). Fast and accurate computation of projected
two-point functions. PRD, 97(2), 023504. https://doi.org/10.1103/PhysRevD.97.023504

Hamilton, A. J. S. (2000). Uncorrelated modes of the non-linear power spectrum. Monthly
Notices of the Royal Astronomical Society, 312(2), 257-284. https://doi.org/10.1046/].
1365-8711.2000.03071.x

Iserles, A., & Ngrsett, S. P. (2005). Efficient quadrature of highly oscillatory integrals using
derivatives. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2057), 1383-1399. https://doi.org/10.1098/rspa.2004.1401

Karamanis, M., & Beutler, F. (2021). hankl: A lightweight Python implementation of the
FFTLog algorithm for Cosmology. arXiv e-Prints, arXiv:2106.06331. https://doi.org/10.
48550/arXiv.2106.06331

Leonard, C. D., Ferreira, T., Fang, X., Reischke, R., Schoeneberg, N., Troster, T., Alonso,

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 5
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://doi.org/10.48550/arXiv.2211.13400
https://doi.org/10.3847/1538-4365/ab1658
https://doi.org/10.3847/1538-4365/ab1658
https://doi.org/10.1093/mnras/staa1726
https://doi.org/10.1103/PhysRevD.97.023504
https://doi.org/10.1046/j.1365-8711.2000.03071.x
https://doi.org/10.1046/j.1365-8711.2000.03071.x
https://doi.org/10.1098/rspa.2004.1401
https://doi.org/10.48550/arXiv.2106.06331
https://doi.org/10.48550/arXiv.2106.06331
https://doi.org/10.21105/joss.08618

SS

The Journal of Open Source Software

D., Campagne, J.-E., Lanusse, F., Slosar, A., & Ishak, M. (2023). The N5K challenge:
Non-limber integration for LSST cosmology. The Open Journal of Astrophysics, 6, 8.
https://doi.org/10.21105/astro.2212.04291

Levin, D. (1996). Fast integration of rapidly oscillatory functions. Journal of Computational
and Applied Mathematics, 67(1), 95-101. https://doi.org/10.1016/0377-0427(94)00118-9

Lewis, A., & Bridle, S. (2002). Cosmological parameters from CMB and other data: A Monte
Carlo approach. Physical Review D, D66, 103511. https://doi.org/10.1103/PhysRevD.66.
103511

Murray, S., & Poulin, F. (2019). hankel: A Python library for performing simple and
accurate Hankel transformations. The Journal of Open Source Software, 4(37), 1397.
https://doi.org/10.21105/joss.01397

Ogata, H. (2005). A numerical integration formula based on the Bessel functions. Publications
of the Research Institute for Mathematical Sciences, 41, 949-970. https://doi.org/10.
2977 /prims,/ 1145474602

Schéneberg, N., Simonovi¢, M., Lesgourgues, J., & Zaldarriaga, M. (2018). Beyond the
traditional line-of-sight approach of cosmological angular statistics. JCAP, 2018(10), 047.
https://doi.org/10.1088/1475-7516,/2018,/10,/047

Zieser, B., & Merkel, P. M. (2016). The cross-correlation between 3D cosmic shear and the
integrated Sachs-Wolfe effect. 459(2), 1586-1595. https://doi.org/10.1093/mnras/stw665

Reischke. (2025). pylevin: efficient numerical integration of integrals containing up to three Bessel functions. Journal of Open Source Software, 6
10(115), 8618. https://doi.org/10.21105/joss.08618.

https://doi.org/10.21105/astro.2212.04291
https://doi.org/10.1016/0377-0427(94)00118-9
https://doi.org/10.1103/PhysRevD.66.103511
https://doi.org/10.1103/PhysRevD.66.103511
https://doi.org/10.21105/joss.01397
https://doi.org/10.2977/prims/1145474602
https://doi.org/10.2977/prims/1145474602
https://doi.org/10.1088/1475-7516/2018/10/047
https://doi.org/10.1093/mnras/stw665
https://doi.org/10.21105/joss.08618

	Summary
	Statement of need
	Examples
	Comparison with various codes
	hankel
	hankl
	pyfftlog
	pyCCL

	Acknowledgements
	References

